图表列表 图 1。组合技术传感器。(照片由瑞士 U ZNACH 的 ASIM T ECHNOLOGIES 提供)。.................................................................................................................................... 3-3 图 2。单车道和多车道高速公路的路管配置。(照片由俄勒冈州塞勒姆的 T IME M ARK , IN C . 提供)。........................................................................................................... 4-2 图 3。JAMAR TRAX-III 计数器的前面板显示。(图片由宾夕法尼亚州霍舍姆的 JAMAR T ECHNOLOGIES, IN C. 提供)...................................................................................................... 4-3 图 4。感应环路检测器安装的主要组件............................................................................................. 4-4 图 5。铁质金属车辆中的磁偶极子引起的地球磁场中的磁异常。................................................................................................................................... 4-7 图 6。当车辆进入并穿过磁传感器的检测区时,地球磁场的畸变。(绘图由 N U-M ETRICS,UNIONTOWN,PA 提供)。4- 8 图 7。双轴和三轴磁通门磁力计传感器。............................................................................. 4-10 图 8。感应磁力计传感器。................................................................................................ 4-11 图 9。安装在路基中的铝槽中的 V IBRACOAX 压电传感器。(图纸由 IRD, I NC ., S ASKATOON , SK 提供)。................................................................................ 4-13 图 10。安装在路基中的 ROADTRAX 压电 BLC 传感器(ROADTRAX,1995-1996)。.................................................................................................... 4-14 图 11。B 端板传感器。(照片由 IRD, IN C., SASKATOON, SK 提供)。.................... 4-23 图 12。B 端板或 WIM 系统称重传感器(典型)............................................................................. 4-24 图 13。LINEAS 石英传感器(图纸由瑞士 INTERTHUR 的 K ISTLER INSTRUMENTS AG 提供)。带有全长压电传感器的 WIM 安装 ...................................................................................................... 4-25 图 14。................................................................................................................................. 4-26 图 15。电容垫传感器连接到数据分析设备。(照片由 L OADO M ETER , C ORP ., BALTIMOER , MD 提供)............................................................................................. 4-28 图 16。三线视频图像处理器。................................................................................................... 5-3 图 16。视频图像处理器(也称为机器视觉处理器)........................................ 5-3 图 17。视频图像处理器(续)。................................................................................................ 5-3 图 18。用于车辆检测、分类和跟踪的概念图像处理。(K LEIN , 2006) .................................................................................................................................................... 5-5 图 19。四个 VIP 和电感环路检测器的车辆数量比较 ........................................................................ 5-9 图 20。车辆速度与 .照明 VIP 测试结果 ............................................................................................. 5-11 图 21。车辆数量与 .照明 VIP 测试结果 ............................................................................................. 5-11 图 22。车辆数量与 .速度 VIP 测试结果 .................................................................................. 5-12 图 23。微波雷达操作。......................................................................................................... 5-14 图 24。使用 FMCW 微波存在检测雷达进行速度测量 ........................................... 5-15 图 25。FMCW 微波存在检测雷达的侧装配置说明多车道车辆检测。(照片由加拿大多伦多 EIS 提供)...................................................................................................................................... 5-16 图 26。恒定频率波形...................................................................................................................... 5-17 图 27。多普勒微波雷达传感器。................................................................................................ 5-17 图 28。存在检测微波雷达传感器 ........................................................................................ 5-18 图 29。激光雷达光束几何形状。(绘图由 OSI Laserscan 公司提供,佛罗里达州奥兰多).......... 5-18 图 30。激光雷达传感器。........................................................................................................................... 5-18 图 31。被动红外传感器 ............................................................................................................................. 5-20 图 32。车辆和路面发射和反射能量 ............................................................................................. 5-21 图 33。被动红外传感器中的多个检测区域配置 ............................................................................. 5-21 图 34。超声波传感器 ............................................................................................................................. 5-25 图 35。超声波测距传感器的安装。(由密歇根州安娜堡的微波传感器公司提供)...................................................................................................................................... 5-26 图 36。声学阵列传感器。......................................................................................................................... 5-29
产品类别 产品系列 描述 示例应用 沉积工艺 IME DM-SIP-100X 银导电模内电子屏幕 DM-CAP-1060S 碳导电模内电子屏幕 DM-INS-1500 交叉电介质模内电子屏幕 可拉伸 DM-SIP-2000 银导电 可穿戴设备、医疗、汽车屏幕 DM-SCP-2000 银/碳导电 可穿戴设备、医疗、汽车屏幕 DM-CAP-2100 碳导电 可穿戴设备、医疗、汽车屏幕 DM-INS-2500 绝缘体 可穿戴设备、医疗、汽车屏幕 银 DM-SIP-3000 低温微薄片 显示器、薄膜光伏、智能玻璃、加热器、汽车、航空航天屏幕和微米粉银浆 DM-SIP-3100 高粘度纳米银浆 薄膜光伏、加热器屏幕 DM-SIJ-3200 纳米银喷墨 OPV、显示器、传感器喷墨 DM-SIJ-3300 纳米银 气溶胶打印 半导体、医疗 气溶胶喷射 氯化银 DM-SIP-3400 银和氯化银浆料 生物传感器 屏幕/注射器 碳 DM-CAP-4100 高耐久性热固性碳浆 汽车 屏幕 DM-CAP-4300 低温热固性碳浆 传感器 屏幕 DM-CAP-4400 疏水性碳浆 生物传感器 屏幕 DM-CAP-4500 柔性碳浆 医疗、纸张 屏幕 DM-CAP-4700 钙钛矿碳浆 钙钛矿太阳能电池 屏幕/注射器 铜 DM-CUI-500X 光烧结纳米铜墨水 PV、半导体 喷墨 DM-CUI-501X 光烧结纳米铜墨水 PV、半导体 气溶胶喷射 DM-CUI-505X 微米/纳米铜混合浆料 汽车、半导体、 PV 屏幕 DM-CUP-5080 和纳米铜浆料系统 汽车、半导体、PCB、PV 屏幕 DM-CUP-5100 涂层 DM-OCI-6000 喷墨印刷涂层 传感器、显示器涂层 DM-OC-6020S 热固性涂层 汽车涂层 DM-OC-6031S 透明低温固化 显示器、触摸传感器涂层 绝缘体 DM-INI-7003 高环氧含量 PV、显示器 喷墨 DM-IN-7011S 紫外线固化热固性材料 工业 屏幕 DM-IN-7021S 热固化热固性材料 加热器 屏幕 透明 DM-SNW-8012S 透明导电 显示器、触摸传感器、加热器 屏幕 导电石墨烯 DM-GRA-9000 单层和多层石墨烯 传感器、加热器 喷墨 DM-GRA-9100 碳/石墨烯混合物加热器、传感器、汽车 屏幕 导电 DM-AS-10000 环氧热固性导电胶 混合印刷电子 注射器/屏幕/模板 胶粘剂 DM-SAS-10000 高拉伸性、柔韧性 可穿戴设备、模内电子 注射器/屏幕/模板导电胶 DM-SSA-10300S 银烧结芯片粘接 半导体组装 注射器/屏幕/模板 非导电 DM-ADH-11001 非导电胶 传感器、混合印刷电子 注射器/屏幕/模板 胶粘剂 压阻 DM-PIR-12000 压阻传感器 屏幕 高温 DM-SIP-14000 金属陶瓷糊料 加热器、电阻器、电位器 屏幕 烧结 DM-INS-14100 介电体和釉面 加热器、电阻器 屏幕 热界面 DM-TIM-15000 凝胶/油灰 半导体、PCB 组装、注射器 材料 汽车、电池 DM-TIM-15200 相变材料 半导体、PCB 组装、注射器/屏幕/模板 汽车、电池 DM-TIM-15300 热固性环氧树脂 半导体、PCB 组装、注射器/屏幕/模板 汽车、电池 DM-TIM-15400 油脂 半导体、PCB 组装、注射器/屏幕/模板 汽车、电池 封装剂/ DM-UFL-16000 SMT 组件底部填充/封装剂 混合印刷电子 屏幕 底部填充剂 DM-ENC-16200 可拉伸 UV 固化热固性材料 可穿戴设备 屏幕 密封剂 DM-HMS-17000 UV 固化、激光和高温 PV、半导体 屏幕/注射器烧制密封剂
Bloczincir是一本不变的数字录音簿,在由妥协算法管理的集中式网络上工作。Bloczincirde用户用作密码数字加密钱包中生产的钱包开关和钱包地址的个人标识符,而不是真实的身份信息。数字加密钱包是与块分开开发的应用程序。但是,没有它们,就不可能与Blockzincir进行交互,例如转移操作的实现和智能合约应用程序的操作,因为没有什么代表块状用户。今天,在数字加密钱包应用中,椭圆曲线数字签名算法(ECDSA)用于开关生产过程。该算法的安全性是基于椭圆曲线上离散对数问题的难度。在1994年,在多项式存在下,在存在量子计算机的情况下,可以在存在量子计算机的情况下解决由shor和清晰的加密系统所暗示的算法。这意味着无法确保使用ECDA创建的加密钱包的安全性(例如在存在量子计算机存在的所有系统)无法确保。量子资金RAI在2016年召集,因为需要标准化密码系统。在此呼叫的范围内,选择基于笼子的晶体二利锂和猎鹰算法作为数字签名标准。在这项研究中,为比特币和Ethe Reum Blocks提供了在加密钱包开关生产阶段中使用晶体 - 二硫硫哲数字签名算法的,用于Quantum Safe Safe数字加密钱包,并使用Rust Programming语言执行这些应用。指示了量子后为经典和后量词开发的钱包应用程序钱包信息的平均创建时间。此外,还指出了在研究范围内开发的数字加密钱包应用程序的处理和验证过程的平均实现周期,这些应用程序通过创建经典和后量子块链原型。
职业是指依据一定的规则,通过一定的教育获得系统的知识和技能,为人们生产有用的产品,提供服务,并获得经济回报的一种工作。教师职业对于一个国家的发展,对于培养合格的高素质人力资源,对于在国家建立福利和社会宽容,对于人的社会化和适应社会生活,对于向新一代传承社会的风俗、传统和传统,负有重大的责任。承诺也可以定义为个人对组织的强烈承诺、对组织的认同、对团队的融入和喜爱、对组织的归属感。专业承诺;也表现为个体对某种事物的认同,即卷入到该事件、过程、组织中的力量。教师的专业承诺对教育培训过程产生积极影响,有助于提供合格、优质、健康的教育环境。从这个意义上来说,教学需要成为一个充满活力、乐于改变的职业。在此背景下,教师对教育研究的态度在精神、身体和专业投入方面非常重要,以便能够表现出必要的工作绩效。基于此,本研究探讨了教师专业承诺与教育研究态度之间的关系。人们认为,该研究的结果将有助于教师理解其专业承诺的重要性和作用,并有助于形成有关教师对教育研究的态度的想法。本研究依据量化研究方法及关系筛选模型进行。研究样本包括 2021-2022 学年在伊斯坦布尔公立学校(小学、中学、高中)工作的 400 名教师。为了收集研究中的数据,我们使用了 Utkan 和 Kırdök (2018) 开发的“个人信息表”和“专业承诺量表”以及 İlhan、Şekerci、Sözbilir 和 Yıldırım (2013) 开发的“教育研究态度量表”。研究结果正处于分析阶段,稍后将给出研究结果和结论。
本研究重点探讨学前教育的重要性和目的范围内技术在教育管理中的应用。学前教育涵盖儿童各个方面的发展,同时也使儿童能够更有生产力和创造力,并最大限度地发挥其潜力。在学龄前时期,当孩子们为生活做好了准备时,他们可以通过养成某些习惯和进行个性化发展在社会中展现自己的身份。在此期间,由丰富刺激组成的物质环境通过支持孩子的学习体验和所有发展领域,有助于成功完成教育过程。学龄前阶段,即生命的最初六年,是儿童发展最快、与社会互动最有效的时期。在大脑发育快速发展的这些年里,与社会环境的互动和刺激支持着孩子的多方面发展。所有受到的刺激都会对孩子的心理健康和思维能力产生影响。当对孩子的大脑发育和心理健康进行整体评估时,人们会更好地理解环境因素的重要性,并让孩子在健康的环境中完成其发展。在这样的背景下,科技已经渗透到了生活的方方面面,从学龄前开始就接触到了每一个受众,让孩子们在很小的时候就熟悉了科技设备。随着科技设备的使用越来越广泛,关于它为儿童生活增添的维度的各种学术讨论也纷纷出现。这些讨论的结果是,人们得出结论:技术对儿童发展构成了风险。原因是触摸屏控制了孩子的生活,使他/她面临各种疾病的同时还与社会隔绝。随着近年来科技活动的增加,儿童花在科技上的时间也以同样的速度增加。尽管许多研究人员和教育工作者都提倡儿童从学前开始使用科技学习的重要性,并致力于研究和实施与科技相关的应用,但幼儿使用科技对其发展的影响仍然存在争议。因此,有必要提供一种类型学来有效地概念化影响儿童利用技术学习的关键因素之间的相互作用。
核心理念#1:计算机利用传感器感知世界。感知是从感觉信号中提取信息的过程。计算机具有足够“看”和“听”的能力并能实际应用,这是人工智能最重要的成就之一。学生必须了解机器感知口语或视觉图像需要广泛的领域知识;例如,对于口语来说,一个人不仅要知道语言的声音,还要知道语言的词汇、语法和使用形式。缺乏这样的知识,机器语音识别就无法达到人类的准确度。 K-2 的学生应该知道如何与基于语音的解决方案进行交互,并具有一些机器视觉方面的经验(例如,他们可以使用网络摄像头和基于网络的应用程序进行面部或物体识别,或者演示 Google 的 QuickDraw)。 3-5。在课堂上,学生应该能够修改采用结合儿童人工智能原理的编程框架编写的基于感知的应用程序。例如,他们可以创建对口头表达或视觉标记或特定面孔的出现做出反应的应用程序。 6-8。在课堂上,学生应该能够自己创建更复杂的应用程序。 9-12。在课堂上,学生应该能够识别和展示机器感知系统的局限性,并使用机器学习工具来训练感知器分类器。核心理念#2:代理维护世界的模型/表征并使用它们进行推理。人工智能系统通常被定义为感知和表征世界并产生有意图的、影响世界的输出的智能代理。表征是自然智能和人工智能的基本问题之一。学生应该理解表示的概念,例如地图如何表示某个区域或图表如何表示棋盘游戏的情况。学生还必须了解,计算机使用数据构建表示,并且可以通过应用从已知信息中获取新信息的推理算法来操纵这些表示。虽然人工智能代理可以思考非常复杂的问题,但它们的思考方式并不像人类。许多人类可以轻松进行的推理超出了当今人工智能系统的能力。在 K-2 年级,我们希望学生能够检查智能代理创建的演示文稿(例如,Calypso 为 Cozmo 创建的世界地图)并能够使用纸和铅笔创建简单的演示文稿。 3-5。在课堂上,我们希望学生能够使用简单的计算机程序中的表示,例如 Scratch 中的精灵可以将画布和精灵视为世界的表示,并使用触摸块来查询它。这个级别的学生,哪种动物有“翅膀”?他们还可以通过练习来检查推理算法,例如建立决策树来根据一系列是/否问题确定他们的想法,例如: 6-8。在课堂上,学生应该能够检查诸如 Google 知识图谱之类的演示文稿并模拟简单的图形搜索算法。 9-12。在课堂上,学生应该能够使用基本数据结构(列表和字典)来编写简单的推理算法。重要创意#3:计算机可以从数据中学习。机器学习算法允许计算机使用人类提供的或机器本身接收的训练数据来创建自己的表示。近年来,得益于机械工程技术,人工智能的许多领域都取得了重大进展,但要取得成功,就需要大量的数据。例如,Open Image Dataset V4, 9
在本文中探讨了期货研究领域内开发研究方法和构建研究设计的概念。进行了系统的分析,以检查通常在商业研究中使用的“研究企业”模型的相关性和适当性,用于在期货研究中的应用。该研究概述了制定研究方法和构建研究设计设计的七个步骤过程,以研究未来,从定义主要的哲学姿态开始,并在研究设计的构建中达到顶峰。关键字:期货研究,方法论,研究洋葱,研究设计。引言期货研究的开始对于学生和学者带来了新的机会,但提出了基本问题,这可能是令人生畏的。至关重要的考虑是在开始论文或论文时如何处理方法。期货研究专家坚持认为,大多数方法都是从其他领域借来的,使该领域具有灵活性,但也容易适应各种技术。但是,关于期货研究中方法论的文献的稀缺性使区分哲学和方法之间的过程变得复杂,从而使新移民建立独特的研究设计的挑战。大多数学术文章都集中在特定方法上,因此不清楚选择一种方法或结合多种方法的逻辑。尽管期货研究过去曾面临过方法论,但远见研究人员已经完成了实质性的工作,以提高该领域的方法学连贯性。2016年。(2016)。然而,现代社会现实的快速变化的性质为期货研究带来了新的挑战,质疑现有方法是否可以有效地应对复杂而不确定的未来。对未来的探索是一种相对较新的科学方法,这使得分析期货研究的发展是一种科学学科,以更好地了解其潜力和局限性。在未来学领域的期货研究的一致理论框架的发展仍然是一个重大挑战。尽管人们广泛讨论了期货研究的方法,但需要良好的期货方法发展模型。要解决这一差距,分析来自相关字段的现有系统模型可以提供有价值的见解。由Saunders等人开发的“研究洋葱”模型已在社会科学中广泛采用,并已被证明是构建理论框架的有效工具。但是,其对期货研究背景的适用性需要进一步的评估和适应。预期的概念或远见是理解与未来事件相关的人类行为和决策过程至关重要的。该学科着眼于以后影响现实的方式,从而有意识地使用目前的未来元素。预期包括各种认知和方法论方法,包括探索性和预测性思维。通过采用系统的期货研究方法,学者可以开发有效的方法来探索和预测未来的结果。(2016)。鼓励个人预见未来的情况,做出明智的决定,平衡短期和长期利益,确定重大事件的原因,并增强实现既定目标的动力。渴望知道接下来会发生什么,而不仅仅是关于个人未来计划,还涉及政府和领导人在整个历史上寻求远见。从雇用占星家到建立特殊研究委员会,他们将时间和资源投入到未来的战略规划中。但是,变更的不可预测性使得在该领域应用现代工具或专家系统变得困难。许多科学家质疑未来的“研究能力”及其科学依据,这是由于各种原因包括:社会现实不断发展,因此根据Popper(1965),科学预测不可能。科学预测仅适用于罕见的孤立系统。社会系统是一个无法科学预测的开放系统。从当前因素中得出的预测可能会在将来发生变化或变得无关紧要,从而对首先要出现的事情造成了错误的假设。当精确得出当前条件时,这些预测也可以看作是合成的和无礼的。此外,预测太远的前进会导致乌托邦式的思想,而不是变量之间的因果关系。对期货研究的批评者表明,大多数批评源于误解该领域的关键方面。为了讨论期货研究的科学基础,要区分“科学”需要什么。Ruse(1982)指出,定义“科学”很复杂,但是特征包括搜索法律,解释,预测,可检验性和确认。测试科学理论后,它要么由积极证据证实,要么根据观察结果被拒绝。这个过程固有地涉及预测,这是科学方法的重要方面。Niiniluoto(2001)指出,在经济学,物理学和心理学等学科中,基于当前条件的未来事件进行预测。这些预测创造了一个理解未来的框架,使科学家可以针对可观察的事件进行测试。Niiniluoto(2001)认为,如果没有做出预测的能力,任何科学理论都将无法满足可检验性标准。同样,Patomaki(2006)提出,即使在通常不使用预测的社会科学中,预期期货也是所有行动不可或缺的一部分。这意味着社会科学还应该有能力提供有关在当今环境中可能存在相关期货的解释。但是,鉴于柏拉图的经典观点,即知识是合理的,niiniluoto(2001)质疑“远见”是否可以视为一种知识形式。作者指出,尽管有关于未来的命题,目前可以验证为真实,但这主要适用于精确的科学。对未来的偶然事件或状态的预测在经典的意义上是不可知的。诸如愿望,恐惧和期望之类的产品是主观的,不能与科学联系在一起。屠杀(1990年)反对考虑过时的世界观的远见,理由是它依赖与当前情况或需求不符的假设。在回应中,Niiniluoto(2001)提出清楚地区分研究的对象和研究证据:期货研究的重点应该放在理解当前的目前,这是有关可能未来的证据。另一种方法将期货研究的对象定义为“分支树”或现实世界中尚未体现的各种替代可能性。这种观点承认,未来由现有环境中的多种可能性和不实现的权力组成,这可能在特定条件下展开。在研究开放系统中的未来方面,当代期货研究已从预测分析,可能性探索和场景构建转移(Patomaki,2006年)。这种转变强调了远见 - 可以分析可能的,更可取的未来,并设计未来,而不是预测或预测它。这一想法是由Polak and Boulding在1973年进一步提出的。研究人类看法的研究人员承认,现实具有双重性质 - 现在和想象中的。这种双重性塑造了我们对时间的理解,使我们能够区分过去,现在和未来。Polak and Boulding(1973)还强调,必须通过即将发生的事情来感知和塑造未来。在2003年贝尔引入倾向概念时,期货研究范式发生了重大转变。根据Poli(2011),核心差异在于理解多种可能性,在某些情况下,处置是可以实现的事实。从本体论的角度来看,处置不再是一种认知产品,而是有可能调节未来的事实。尽管这为建立研究框架创造了坚实的基础,但它并不能为设计研究方法和选择独特的研究设计提供连贯的概念。要开发一种连贯的期货研究设计,至关重要的是要确定将认识论和本体论假设与研究方法和解释发现方法联系起来的逻辑步骤。一种方法是基于Saunders等人提出的“研究工具”概念(图1)。此框架提供了对制定有效方法的主要层或阶段的疲惫描述,如Raithatha在2017年所指出的那样。研究方法首先要描述哲学,选择方法,方法和策略,并定义时间范围 - 最终导致了研究设计和数据收集和分析的技术。研究企业由六个主要层组成:研究理念,理论发展方法,研究策略的选择,案例内分析,跨案例分析和发现。期货研究的研究过程涉及多个阶段,包括假设发展,数据收集和分析。所使用的方法取决于该研究的目的是测试现有理论还是发展新理论。有三种主要方法:演绎,电感和绑架。演绎方法通常用于测试理论,而归纳方法则首选用于发展有限的研究理论或研究领域。方法论选择决定使用定量和定性方法或两者的组合。研究策略包括实验,调查,档案研究,案例研究,人种学,行动研究,扎根理论和叙事探究。时间范围可以是横断面(短期研究)或纵向(长期研究)。研究人员还必须考虑技术和程序,包括数据收集和分析方法,例如主要数据和次要数据,样本组和问卷内容。最初为商业研究设计的研究洋葱模型需要适应期货研究。对该模型的批判性审查揭示了需要附加层的:未来研究的方法。具有七个主要层的修订模型包括研究理念,期货研究的方法,理论发展,战略,方法论选择,时间范围以及技术和技术和程序。新层为理解研究基础的科学探究提供了一种关键方法。从历史的角度来看,有四个主要的研究哲学立场:实证主义者,解释主义者,实用主义和批判现实主义者。实证主义反映了自然科学家的哲学立场,重点是观察实体并存在于社会参与者外部的客观主义假设上。知识是通过基于因果关系的观察和找到事件规律来获得的。相反,解释主义采用了主观主义的本体论假设,即实体是由话语,现有或社会建构的现实构成的,仅通过意识或语言等社会结构进行研究。现实是社会建构的,并且不断发展,使知识和事实相对和主观。实证主义和解释主义立场之间的二分法因不考虑个人在社会现实中的作用而受到批评。同时,批判现实主义挑战了古典经验主义的原子事件的观念是知识的最终对象,而是区分传递性(由人类活动产生的知识)和不及物的(与人类生存无关)类型的及非传染性(稳定对象)。根据Bhaskar的说法,真实实体独立于事件,可以区分域:真实,实际和经验的领域。科学的核心目的是产生有关机制的知识(不及物对象)和描述这些机制的陈述。传统的科学方法着重于通过受控环境中的实验来发现自然序列,定律和因果关系机制。事件1之后的事件2的概念不是绝对的,并且可能会根据所讨论的系统而变化很大。而不是直接链接的因素和效果的封闭系统,现实是更复杂和动态的,导致“开放系统”一词。在这样的系统中,事件2并不总是遵循事件1,因为环境中存在非策略的可能性和权力。在研究策略方面,Saunders等。因果定律是自然的生成机制,在封闭和开放系统中都可以理解。它们是作为趋势的运作,而不是解释正在发生的事情,而是在某些情况下可能发生的事情。批判现实主义调和积极和解释性的本体论立场,为桥接解释和理解提供了基础。经验观察不足以解释因果关系,因为需要考虑隐藏的机制。因果解释的发展应集中于探索生成机制,而不是寻找规律性。从事件到机制的重点转变对科学研究具有重要意义,特别是在期货研究中,探索生成机制可以帮助预测未来的事件。存在未来的三个基本观点:预测性,解释性和批判性。预测观点假定未来是确定性的,可以知道。相比之下,解释性观点依靠对各种图像的解释性分析寻求洞察力而不是预测。批判性观点认为,没有一个预定的未来,而是多个可能的未来。Kosow和Gaßner(2008)和Inayatullah(2013)提出了与这些观点相似的观点,这可以与实证主义,解释主义和批判现实主义的科学研究哲学立场有关。实证主义基于当前和过去的知识,假定未来的可预测性和可控性,通过因果,法律般的和功能关系来寻找事件规律性。这允许通过外推精确地计算未来事件。解释主义假定未来的不可预测性,将其视为随机,混乱和不可预测的事件链。在这种观点中,对未来的控制或预测是不可能的,只有通过直觉策略才能获得知识。批判现实主义假定未来的灵活性,但考虑到它是真实的,尽管尚未表现出来,包括通过变革事件实现的多种可能性。这允许参与参与者的未来(至少在某种程度上)影响(至少在某种程度上)。Patomaki(2006),Bell(2003)和Van der Heijden(2000)声称,批判现实主义为期货研究提供了独特的基础。List(2005)和Aligica(2011)合理地注意到,可以采用关键的现实主义方法来解释可能的未来约束。期货研究集中于正在进行的过程和行动,而不是过去的事件。未来学家使用理论框架来解释社会结构的发展,设定边界条件并预测可能的未来情况。批判现实主义者的哲学通过探索因果机制和推断趋势到将来的某个点,为期货研究提供了一个独特的框架。积极的哲学可以为具有人口统计学和经济发展等有形数据的领域的期货研究提供理论基础。解释性立场集中在理解未来的图像范围上,而批判现实主义则假定可能受时事影响的不同可能的未来。期货研究的方法各不相同,包括基于数学运营的定量预测,专注于多种可能性的替代期货以及强调发展未来的参与式行动学习/研究。Kosow和Gaßner声称,方法已从定量预测逐渐发展为基于预见的定性技术,适合研究复杂的期货。根据Kuosa(2011),期货研究主要将归纳推理与直观技术联系起来,而基于物理论证的演绎推理则侧重于控制功能和指导知识。Kuosa(2011)还强调,鉴于其本质上可变的和不可预测的性质,当代期货研究中的重要错误之一是期望控制或准确预测未来。无法提供确切的预测通常被当代科学家视为缺乏科学基础。然而,承认失败是科学方法不可或缺的一部分至关重要,因为这是现实生活中的普遍现象,有助于科学知识。演绎和归纳推论在期货研究中广泛使用,但Kuosa(2011)指出向绑架推理的转变。绑架推理涉及基于可用证据和观察线索样符号的结论。(2016)提出了各种方法,包括实验,调查,档案研究,案例研究,人种学,行动研究,扎根理论和叙事探究。可以在期货研究中区分三种研究方法:演绎,旨在指导知识和控制功能;归纳,专注于控制信息;并绑架了,旨在识别结构,连接,上下文和约束。但是,期货研究可以用不同的方式分类,研究策略是选择数据收集方法来回答研究问题并满足目标的一般框架。List(2005)确定了两种主要研究方法类型:定量和定性,而Kosow和Gaßner(2008)和Puglisi(2001)也区分了探索性和规范方法。探索方法检查了多个未来和可能的发展,而规范方法旨在塑造理想或不良的未来。期货研究中的三种主要研究策略是描述性的,规范性的(规范性)和探索性的,可以用来描述未来的发展模式,规定实现理想未来的行动或探索可能的未来事件。最终,期货研究中的方法论选择取决于研究目标,Saunders等人。(2016)定义与定量和定性方法有关的研究选择。研究方法包括各种方法,包括两者的直接或复杂混合物或单方法的利用。定量方法涉及数值数据和数学操作,但定性方法需要收集广泛的描述性信息。要进行,研究人员必须选择一种期货研究方法。单方法;混合方法将定量和定性方法结合在单个研究中,以实现各种目标,并减轻使用孤立方法的局限性;多方法选择会破坏定性和定量方法的使用,尽管一种方法是主要基础,而另一种方法则提供了辅助支持。根据Saleh等人(2008年),研究选择的这种选择也与期货研究有关,其中方法的范围可以分为定量技术,例如时间序列分析,因果分析,趋势分析,趋势分析以及诸如Delphi Surveys,Delphi Surveys,Futures Wheel,Futures Wheel,环境扫描等的定性方法。某些方法(例如方案构建和建模)成功地弥合了定量和定性领域。期货研究中的时间范围通常包括研究的期限或不同广度的时间顺序。Kosow andGaßner(2008)确定了三个基本时间范围:短期(长达10年),中期(长达25年)和长期(超过25年)。他们还将静态观察与将来的某个点区分开,通常与规范策略作为替代时间范围。技术和程序的最后一层将研究设计指向数据收集和分析。所有上述选择都决定了基本数据收集和分析程序的类型,这些方法将有助于回答研究问题。远见采用定性和合并的技术来探索多个未来。在期货研究中构建研究设计可以基于Saunders等人的研究概念。通过将这一概念调整为期货研究,研究局提出了一种将理论知识整合到现场的系统,可以将其汇总为七层。选择研究方法并在期货研究中构建研究设计涉及遵循与研究洋葱七层相对应的七个步骤:哲学选择,方法,策略,选择,时间范围,时间范围,技术和程序。由于缺乏关于未来的经验证据,期货研究中的哲学选择很复杂。要选择一种适当的理念,必须确定研究和可用数据源的运营领域。实证主义可以作为研究的主要哲学态度,在该研究中,有切实的定量数据可获得,实现了未来的“计算”并做出确切的预测,通常在人口统计学和经济发展等领域。期货研究经常采用定性数据,这可能导致采用解释主义或批判现实主义作为主要的哲学立场。如果重点是构建未来的叙述并理解未来的各种形象,则可以选择一种解释性方法。批判的现实主义同时,假设可能存在不同的未来,并且可以受到当今因素的影响,从而适合于机构,文化和政治等领域的场景建设。所选的哲学和方法将影响理论发展的方法。预测涉及诸如外推和计量模型之类的数学操作,通常以积极的哲学姿态使用。演绎推理可能与预测相关,因为它会根据逻辑必需品得出某些结论,然后通过数据收集对其进行测试或验证。归纳和绑架方法从数据收集开始,然后朝着开发明确的理论立场发展。在期货研究中,演绎和归纳方法依赖于预测过去的概率,而绑架的方法着重于识别“弱信号”,即最初的变化迹象。绑架方法通常用于从有限的知识中得出结论。研究策略包括描述性,规范性和探索性方法。描述性策略与预测和演绎推理有关,旨在确切描述未来事件。规范策略探讨了未来应该或不应该的样子,并寻求实现它的方法。探索性策略研究多个未来和可能的发展。研究方法的选择取决于研究问题,问题和整体目标。这可能涉及特定任务的单声道,混合或多方法。研究时间范围的范围可以从长期到短期期货,甚至是回顾时间。在此阶段,构建了一个研究工具,例如调查表或访谈,以适合所有以前的选择。在这种情况下,与立陶宛乔纳斯将军的Aleksandras Melnikovas建立了信件。期货研究的研究洋葱是研究人员和从业人员借鉴期货研究领域中现有方法和方法的指南。此模型通过允许研究人员从各个层中选择合适的理论或实践,从而为方法论开发提供了灵活的框架,从而使他们能够以连贯的方式解决研究问题。研究洋葱的过程指导研究的理论框架,确保所选工具,技术和基础哲学之间的一致性。这导致了研究设计的连贯和逻辑发展。通过借鉴现有方法,研究人员可以基于该领域的既定知识,同时促进其进步。引用的参考文献包括Aligica(2011),Amara(1991),Aspinwall(2005),Bell(2002&2003),Bhaskar(2008),Danermark等。(2002),de Jouvenel(1967),Delaney(2002),Heijden(2000),Inayatullah(2004,2008,&2013),Kosow和Gaßner(2008),Kuosa(2011)和Saunders等。这些来源有助于理解期货研究方法及其在研究中的应用。几位学者在他们的研究中探索了场景规划的概念。例如,List(2005)开发了一种社会查询的方法,其中包括方案网络映射。Lloyd(2012)研究了如何使用互联网应用程序来传播知识并促进职业管理。5月(2000年)讨论了与未来研究有关的各种假设和类型。此外,还有几项关于预期学科的研究,包括Miller等人的工作。(2013),Mingers(2006),Molis(2008)和Myers(2008)。 这些学者探讨了系统思维在管理科学中的作用以及考虑期货研究中多种观点的重要性。 其他研究人员将未来研究的性质作为一门学科进行了调查。 例如,Niiniluoto(2001)质疑期货研究应视为科学还是艺术。 Patokorpi和Ahvenainen(2009)开发了一种期货研究的方法,该方法融合了绑架,而Polak and Boulding(1973)探索了未来学的概念。 Poli(2011)讨论了对未来的明确本体论的必要性,以便更好地了解该领域的复杂性。 Popper(1965)认为,预测和预言是包括期货研究在内的社会科学的重要组成部分。 最后,一些学者检查了特定方法或方案计划的方法。 例如,Puglisi(2001)提供了各种期货研究方法的概述,而Ramos(2002)探讨了将行动研究用作一种先知方法的使用。 总的来说,这项工作的集合代表了方案规划及其与其他领域的关系的一系列观点,例如管理科学,社会探究和期货研究。 Sardar和Sweeney在其2016年出版物“三个正常时期的三个明天”中探索了季节及其三个明天的概念。(2013),Mingers(2006),Molis(2008)和Myers(2008)。这些学者探讨了系统思维在管理科学中的作用以及考虑期货研究中多种观点的重要性。其他研究人员将未来研究的性质作为一门学科进行了调查。例如,Niiniluoto(2001)质疑期货研究应视为科学还是艺术。Patokorpi和Ahvenainen(2009)开发了一种期货研究的方法,该方法融合了绑架,而Polak and Boulding(1973)探索了未来学的概念。Poli(2011)讨论了对未来的明确本体论的必要性,以便更好地了解该领域的复杂性。Popper(1965)认为,预测和预言是包括期货研究在内的社会科学的重要组成部分。最后,一些学者检查了特定方法或方案计划的方法。例如,Puglisi(2001)提供了各种期货研究方法的概述,而Ramos(2002)探讨了将行动研究用作一种先知方法的使用。总的来说,这项工作的集合代表了方案规划及其与其他领域的关系的一系列观点,例如管理科学,社会探究和期货研究。Sardar和Sweeney在其2016年出版物“三个正常时期的三个明天”中探索了季节及其三个明天的概念。在2001年出版的扫罗的书《 This This The Future》中也涉及了这个想法。在2016年发行的桑德斯,刘易斯和索恩希尔的文本中概述了针对商科学生的研究方法。Slaughter在1990年的文章“远见原则”中引入了远见原则。此外,屠杀和屠宰在其出版物中探索了第三千年的未来,“第三千年的期货:启用前瞻性”。voros在2017年发行的手册《预期手册》中讨论了巨大的历史和期待。welch,Piekkari,Plakoyiannaki和Paavilainen-Mantymaki在其2011年出版物中分享了从案例研究中的理论化的思想:“案例研究的理论:迈向国际商业研究杂志上的国际商业研究的多元化未来”。