摘要:准确预测剩余使用寿命(RUL)是保证锂离子电池安全稳定性的关键功能。为解决不同工况下的容量再生和模型适应性,提出了一种基于带自适应噪声的完全集合经验模态分解(CEEMDAN)和双向门控循环单元(BiGRU)的混合RUL预测模型。利用CEEMDAN将容量划分为固有模态函数(IMF)以降低容量再生的影响。此外,提出一种改进的灰狼优化器(IGOW)来保持BiGRU网络的可靠性。利用混沌帐篷映射提高GWO算法中初始种群的多样性,采用改进的控制因子和动态种群权重来加速算法的收敛速度。最后,进行容量和RUL预测实验,验证不同训练数据和工况下的电池预测性能。结果表明,所提出的方法仅使用 30% 的训练集即可实现小于 4% 的 MAE,并使用 CALCE 和 NASA 电池数据进行了验证。
心脏病占全球死亡人数的30%。早期干预和心血管异常的检测可以预防这种死亡。当前的研究提出了一种新的方法,该方法将卷积神经网络(CNN)和长期记忆(LSTM)结合在一起,以预测人心脏功能中异常。机器学习模型用于检测来自ECG和PCG信号的异常。这项研究中使用了两个突出的数据集,即Physionet 2016和Physionet 2017,用于培训和测试开发的机器学习模型。经验模式分解已用于预处理心脏声音信号和心电图信号。使用EMD可以将信号分解为其基本振荡组件,称为固有模式函数(IMF)。通过将信号与噪声比值与原始和过滤的PCG信号进行比较,可以评估该方法在降低噪声方面的有效性。特征提取是通过生成DeNO.信号的缩放图完成的。缩放图是通过连续小波变换(CWT)获得的。此后,一种称为CNN-LSTM的混合深度学习技术用于分类和训练模型。所提出的模型在分类和检测人心脏功能异常方面的精度为86%。
压力是指身体对任何环境变化做出的生理、情绪和心理反应,需要进行调整,对人类心理产生重大影响。视障人士 (VIP) 的压力尤其难以控制,因为他们在未知情况下很容易感到压力。脑电图 (EEG) 信号可用于检测压力,因为它基本上代表了人类大脑中持续的电信号变化。文献表明,压力检测技术大多基于时域或频域分析。然而,使用时域或频域分析可能不足以提供适当的压力检测结果。因此,本文提出了一种使用经验模态分解 (EMD) 和短期傅里叶变换 (STFT) 从 EEG 信号中提取考虑时空信息的特征的方法。在 EMD 中,信号首先被分解为表示有限数量信号同时保持时域的固有模态函数 (IMF),然后使用 STFT 将时域转换为时频域。采用支持向量机 (SVM) 对陌生室内环境中 VIP 的压力进行分类。将所提方法的性能与最先进的压力检测技术进行了比较。实验结果证明了所提技术优于现有技术
该文件是欧洲议会经济和货币事务委员会要求的。AUTHORS Joscha BECKMANN, Kiel Institute for the World Economy, University of Greifswald Salomon FIEDLER, Kiel Institute for the World Economy Klaus-Jürgen GERN, Kiel Institute for the World Economy Stefan KOOTHS, Kiel Institute for the World Economy Josefine QUAST, University of Würzburg Maik WOLTERS, Kiel Institute for the World Economy, University of国际货币基金组织Würzburg法兰克福管理员负责Drazen Rakic Rakic编辑助理Janetta Cujkova语言版本的原始版本:EN关于编辑政策部门提供内部和外部专业知识,以支持EP委员会和其他议会机构,以塑造和行使对EU内部政策的民主审查。要联系政策部门或订阅更新,请写信给:经济,科学和生活质量政策政策政策欧洲议会L-2929-Luxembourg-电子邮件:Poldep-pordep-proconomy-science@ep.europa@ep.europa.europa.eu手稿完成:欧洲联盟,2020年9月2020年9月2020年©2020年9月2020日在Internet上销售。 https://www.europarl.europa.eu/committees/en/econ/econ/econ/econ-policies/onetary-dialogue免责声明和版权本文档中表达的观点是作者的唯一责任,并且不一定代表欧洲议会的正式立场。
ISSN 1330-3651(印刷版),ISSN 1848-6339(在线版)https://doi.org/10.17559/TV-20210121112228 原创科学论文 使用深度生成对抗网络和 EMD 进行 BCI 应用的运动想象 EEG 识别 Stephan STEPHE、Thangaiyan JAYASANKAR*、Kalimuthu VINOTH KUMAR 摘要:脑电图 (EEG) 中的运动想象 (MI) 运动活动仍然有趣且具有挑战性。BCI(脑机接口)允许大脑信号控制外部设备,还可以帮助患有神经肌肉疾病的残疾人。在任何 BCI 系统中,两个最重要的步骤是特征提取和分类方法。然而,在本文中,通过深度学习 (DL) 概念的性能改进了 MI 分类。该系统从 BCI 竞赛三个数据集 IVA 中获取了右手和右脚的两时刻想象数据,并开发了利用传统神经网络 (CNN) 和生成对抗网络 (GAN) 的分类方法。通过应用经验模态分解 (EMD) 并在特征提取技术中混合它们的固有模态函数 (IMF),可以减少训练时间并管理非平稳问题。实验结果表明,所提出的 GAN 分类技术的分类准确率为 95.29%,优于 CNN 的 89.38%。所提出的 GAN 方法在 BCI 竞赛三个数据集 IVA 上实现了 62% 的平均阳性率和 3.4% 的平均假阳性率,这三个数据集的 EEG 事实来自运动皮层的相似 C 3、C 4 和 Cz 通道。关键词:卷积神经网络 (CNN);脑电图 (EEG);经验模态分解 (EMD);生成对抗网络 (GAN);固有模态函数 (IMF)运动想象 (MI) 1 引言 脑机接口 (BCI) 将人类头皮记录的大脑活动转换成计算机控制指令,以调节外部策略,从而帮助丧失行为能力的人恢复运动技能 [1]。人们已经研究了使用脑电图来控制智能轮椅 [2],以及其他外部设备。在脑机接口 (BCI) 中,脑电信号的特征描述是一个重要组成部分。通常使用的脑电数据包含事件相关的 SSVEP 功能 [3] 和运动想象 (MI) [4]。与其他类型的信号相比,脑电信号具有一些不同的特征。收集到的脑电信号因心理状态的不同而不同 [5]。因此,每个受试者的脑电信号都不同。脑电信号是非平稳和非线性的,这意味着脑电数据特征会随时间而变化 [6]。此外,由于合成的脑电信号通常与噪声混合,因此脑电信号分析具有挑战性。因此,应该使用操作过程来提高 EEG 数据的 SNR。EEG 特性由评估频率和时频或时间信号范围内传递的信号能量的方法来控制。然而,就最好的作者而言,还没有使用 BCI 框架中复杂的线性和非线性 BCI 分类器对这些方法进行全面的比较分析。文献中给出的大多数比较值仅限于少数技术或仅一种分类 [7]。小波变换 (WT) 主要用于特征提取过程 [8]、正常空间模式 (CSP) [9] 和主成分分析 (PCA) [10]、EMD [11, 12] 等。由于 EMD 算法能够最佳地分割信号,因此它已被证明是检查非线性和非稳定 EEG 信号的合适候选者。例如,[13] 使用 EMD 算法来滤波运动想象 EEG 信号。然而,常见的 EMD 算法一般根据研究者的经验选取固有模态函数 (IMF),导致部分脑电样本混入不必要的信息,或丢失有用数据。此外,
摘要 — 脑机接口已被研究了 20 多年,并且具有巨大的开发应用潜力,可供医生诊断疾病或帮助患有严重神经系统疾病的患者恢复与社会互动。要达到这些目的,需要分析脑电图数据的技术以及训练模型以识别模式或控制设备的算法。TensorFlow 是 Google 团队为内部使用而开发的机器学习,于 2015 年向公众发布。由于它可以在深度学习神经网络上进行训练和测试,因此可以用于脑电图数据。该项目使用 TF-Keras 和 TensorFlow-DNN 来训练使用脑电图数据对大脑状态进行分类的模型。Neurosky Mindwave Mobile 耳机和由 Micro:bit 开发的新设备是该项目的脑电图信号记录器。采用了最小-最大归一化、集合经验模态分解 (EEMD)、提取等多种技术来分析记录的脑电图数据。结果表明,在对来自 Micro:bit 设备的 EEG 数据进行分类时,TensorFlow-Keras 和 TensorFlow - DNN 模型的准确率为 97%,而 XGBoost 的结果为 98%。结果证实了 TensorFlow 在识别 EEG 数据方面的应用能力。对上述结果有贡献的数据处理技术是最小最大规范化和数据提取。此外,我们还验证了记录数据中的低频漂移对于使用 EEG 数据识别大脑状态至关重要。结果还显示了使用 EEMD 技术生成的 IMF 作为特征来构建使用 EEG 数据对大脑状态进行分类的模型。索引词 —TensorFlow、EEG、XGBoost、TensorFlow-Keras (TF-Keras)、TensorFlow-DNN (TF-DNN)、集合经验模态分解 (EEMD)、Neurosky、Micro:bit、脑机接口 (BC I)
摘要:本研究的目的是以边际频率(MF)和Hilbert Spectrum(HS)的形式提取能量特征分布,以固有模式函数(IMF)域(基于基于Hilbert – Huang huang thime)的实际运动(AM)基于移动(AM)基于运动(AM)的(AM)基于运动图像(MI)的电脑(EEG)信号(HILBERT-HUANG TEMISTIC)(HHT)的频率(HHT)。因此,探索了Delta(0.5-4 Hz)节奏中的F5和F6 EEG信号TF能量特征分布。我们提出了基于IMF的功能(RF)基于IMFRFERDD(IMFRF能量验证的分布密度),IMFRFMFERDD(IMFRF MF能量验证的分布密度)和IMFRFHSERDD(IMFRF HS Enperion Refere for Speption MIM MIM MIM MIM MIME)的参数and HHH HH HH HH HH三角洲节奏的信号。AM和MI任务涉及同时开放的第一个和脚,以及同时关闭的第一和脚。提取八个样本(总计32个),持续时间为1000毫秒,以分析f5am,f5MI,f6am和f6mi EEG信号,这些信号分解为五个IMF和一个RF。IMF4的最大IMFRFERDD值分别为F5AM,F5MI,F6 AM和F6MI的3.70、3.43、3.65和3.69。在增量节奏中,IMF4的最大IMFRFMFERDD值分别为21.50、20.15、21.02和17.30,分别为F5AM,F5MI,F5MI,F6AM和F6MI。此外,IMF4的最高平均IMFRFHSERDD值为39,21、39.14、36.29和33.06,时间间隔为500-600、800-900、800-900、800-900,以及F5am,f5am,f5mi,f5mi,f6am和f6mi,f6mi,f6mi,f6mi,f6mi,f6mi,f6mi,f6mi,f6mi,f6mi,f6mi,f6mi,f6mi,fymi,f6mi,f6mi,flymi,f6m和f6mi,f6m和f6mi,500–600 ms。这项研究的结果,促进我们对F5MM,F5MI,F6MM和F6MI的有意义的特征信息的理解,从而使基于MI的大脑计算机界面辅助设备为残疾人设计。