我们提出了3D空间多模式内存(M3),这是一种多模式存储系统,旨在通过视频源保留有关中型静态场景的信息,以供视觉感知。通过将3D高斯脱衣技术与基础模型集成在一起,M3构建了能够跨粒度呈现特征表示的多模式内存,其中包括广泛的知识。在我们的探索中,我们在以前的特征劈叉上确定了两个关键挑战:(1)在每个高斯原始原始原始原始的存储高维纤维中的计算限制,以及(2)蒸馏功能和基础模型之间的未对准或信息损失。为了解决这些挑战,我们提出了M3的主要场景组件和高斯记忆注意的关键组成部分,从而实现了有效的训练和推理。为了验证M3,我们对特征相似性和下游任务以及定性可视化进行了全面的定量评估,以突出显示高斯记忆注意的像素痕迹。我们的方法包括各种基础模型,包括视觉模型(VLM),感知模型以及大型多模式和语言模型(LMMS/LLMS)。此外,为了演示现实世界的适用性,我们在四足机器人的室内场景中部署了M3的功能字段。值得注意的是,我们声称M3是在3D功能蒸馏中挑战核心压缩挑战的第一项工作。
运动训练的健康益处是巨大的;但是,迄今为止,如何介导这些效果的介导很差。尽管对急性运动的分子机械响应知之甚少,但对于介导维持运动介导的健康益处的运动训练的慢性分子机理效应知之甚少。我们对上游途径对表观遗传机制的影响以及对损失效应,剂量反应效应以及不同运动方式的影响分别和结合的影响有了更大的了解。了解运动训练介导其效果的机制将有两个主要好处。它将促进对针对个人特定临床需求(增强个性化生活方式医学的特定临床需求)调整运动训练计划的方法的理解。此外,它将为开发新的或重新利用的治疗剂提供关键信息,以供无数的健康状况运动。
引言大规模MIMO被认为是在现代无线通信系统(如5G NR及更高版本)中实现所需数据速率、带宽和可靠性的关键技术[1][2]。在基站(BS)中使用大型天线阵列(NT>64)可以显著提高信噪比(SNR),并通过指向特定位置的窄波束实现空间分集传输[3]。这两个特性使得在24至52 GHz的较高频带上进行毫米波通信变得可行[4]。事实上,它们是克服频谱较高部分传播路径损耗增加的有效方法[5][6]。然而,由于射频(RF)链数量的增加,大量天线也意味着更严格的硬件要求,从而导致更高的功耗[5]。从这个意义上讲,提高系统能源效率(EE)已成为主要关注点和活跃研究的重点。一般而言,大规模 MIMO 系统中的 EE 可以通过降低信号处理复杂度及其相关功耗,或通过提高硬件资源利用率 1 [7] 来改善。根据这一标准,[8] 和 [9] 提出了一种联合优化时域波束控制和峰均功率比 (PAPR) 降低的方法,其中计算复杂度显著降低,同时提高了功率放大器效率。然后,
摘要 - 本文提出了一种使用M序列多输入多重输出(MIMO)雷达作为功能性脑成像的非电离应用的功能微波成像的新概念。潜在的假设是,如果我们可以准确地检测到大脑内部的血液体积的局部变化,我们可以推断出执行各种任务时大脑的哪些部分被激活。在此角度,根据MIMO雷达框架的主要挑战是基于到达时间(TOA)结果的多目标定位。为此,我们提出了一种在相处的MIMO-RADAR中的多边定位方法,以检测脑介质内部的单个目标。引入了系统概念,并提出了使用简化物理模型的模拟结果。为了验证这一点,我们专注于短距离感应的波形多样性和信号传导策略选项。模拟结果验证了所提出的方法精确计算目标位置的有效性。
在多输入多输出(MIMO)通信中,发射机和接收器之间多个通道的抽象表征和开发带来了经典通信系统的范式转移。围绕MIMO通信系统开发的技术不仅带来了前所未有的通信速率进步,而且还基本上提高了通过低错误率来衡量的通信的可靠性。我们开发了一个使用离散可变量子系统的MIMO量子通信的框架。我们提出了一个在多个通道之间结合噪声,损失和串扰的MIMO量子通道的通用模型。我们利用近似量子克隆在此通道设置上传输输入状态的不完美克隆。我们证明,与由于MIMO设置的多样性,传输多个不完美的克隆可以实现更好的沟通性能。我们还证明了实力和沟通速率之间的实际交易,并将其称为量子多样性多重交易(DMT),因为它与经典MIMO设置中众所周知的DMT相似。
项目探讨了混合电气推进对减少CO 2的商业航空排放的潜力。突袭评估杂交对涵盖区域和SMR任务的混合飞机的四种不同配置的益处,并代表飞机设计中不同级别的干扰。此评估是与对电动组件的调查和混合动力火车的结构密切相关的。配置研究提供了组件设计和性能估计的规格,作为回报,这些规范是通过飞机的性能评估来合成的。最终目标是两个识别杂交的技术差距和关键推动因素,以详细阐述有前途应用的开发路线图。
Optimal Transport on Quantum Structures Book in the Series of Bolyai Society Mathematic Studies Publication Date 10/2024 Joint Editorial Work With Prof. Jan Maas (Ist Austria), Dr. Tamás Tiktos (Rényi Institute Budapest), Dr. Dániel Virostek (Rényi Institutek Budapest) Including Lecture Notes of Prof. Eric Carlen, Prof. Alessio Angalli, Prof. Francois Golse和Dario Trevisan教授Optimal Transport on Quantum Structures Book in the Series of Bolyai Society Mathematic Studies Publication Date 10/2024 Joint Editorial Work With Prof. Jan Maas (Ist Austria), Dr. Tamás Tiktos (Rényi Institute Budapest), Dr. Dániel Virostek (Rényi Institutek Budapest) Including Lecture Notes of Prof. Eric Carlen, Prof. Alessio Angalli, Prof. Francois Golse和Dario Trevisan教授
下午1:00 Aloha主席Gabbard,Richards副主席和委员会成员:我是夏威夷农场局(HFB)执行董事Brian Miyamoto。 自1948年以来,HFB由全州的1,800名农场家庭成员组成,并作为夏威夷的农业声音,以保护,倡导和推动我们多元化的农业社区的社会,经济和教育利益。 夏威夷农场局支持SB 127,该局建立了传统的农业赠款计划,为从事传统农业的中小型农民提供赠款。 HFB代表了全州农民,牧场主和农业社区的利益。 我们致力于支持所有农业部门,包括常规农业。 常规农业在确保粮食安全,维持农村经济以及增强夏威夷的农业能力方面起着至关重要的作用。 中小型农民是夏威夷农业产业的骨干。 但是,他们面临重大挑战,包括高投入成本,本地和全球市场的竞争以及对财务资源的机会有限。 SB 127将提供有针对性的赠款,以减轻其中一些负担,从而使农民能够专注于生产力和增长。 传统农业仍然是生产大量食物以满足夏威夷社区需求的最有效方法之一。 这些实践使农民可以优化产量,有效地管理资源,并为稳定而多样化的粮食供应做出贡献。 通过向中小型农民提供赠款,该计划下午1:00 Aloha主席Gabbard,Richards副主席和委员会成员:我是夏威夷农场局(HFB)执行董事Brian Miyamoto。自1948年以来,HFB由全州的1,800名农场家庭成员组成,并作为夏威夷的农业声音,以保护,倡导和推动我们多元化的农业社区的社会,经济和教育利益。夏威夷农场局支持SB 127,该局建立了传统的农业赠款计划,为从事传统农业的中小型农民提供赠款。HFB代表了全州农民,牧场主和农业社区的利益。我们致力于支持所有农业部门,包括常规农业。常规农业在确保粮食安全,维持农村经济以及增强夏威夷的农业能力方面起着至关重要的作用。中小型农民是夏威夷农业产业的骨干。但是,他们面临重大挑战,包括高投入成本,本地和全球市场的竞争以及对财务资源的机会有限。SB 127将提供有针对性的赠款,以减轻其中一些负担,从而使农民能够专注于生产力和增长。传统农业仍然是生产大量食物以满足夏威夷社区需求的最有效方法之一。这些实践使农民可以优化产量,有效地管理资源,并为稳定而多样化的粮食供应做出贡献。通过向中小型农民提供赠款,该计划面对粮食不安全和生活成本的上升,支持常规农业是对夏威夷的自给自足和韧性的投资。农业是夏威夷经济的关键驱动力,有助于创造就业机会,旅游业和当地粮食系统。