• 5G 无线电 • 增材层制造 • 先进材料 • 发动机辅助系统 • 天线 • 人工智能 (AI) • 自动驾驶仪 • 电池 • 线束 • 复合材料 • 连接器 • 数据存储 • 设计软件 • 电动机 • 嵌入式计算 • 发动机控制单元 • 燃料电池 • 万向架 • 地面控制系统 • 图像传感 • IMU、陀螺仪和加速度计 • 发射系统 • 激光雷达 • 机器学习 • 机床 • 维护 • 运动控制 • 电机控制器 • 导航系统 • 降落伞 • 性能监控 • 个人信息系统 • 电源管理系统 • 螺旋桨 • 无线电链路和遥测 • 实时操作系统 • 感知与规避/雷达 • 伺服执行器 • 模拟与测试 • 太阳能 • 声纳与声学系统 • 群集 • 热传感器 • 应答器 • UTM • 视频编码
摘要:缺乏直观和活跃的人类 - 动物相互作用使使用上肢辅助设备很难。在本文中,我们提出了一个基于学习的新型控制器,该控制器直觉地使用发作运动来预测辅助机器人所需的终点位置。实施了一个由惯性测量单元(IMU),肌电图(EMG)传感器和机械学(MMG)传感器组成的多模式传感系统。该系统用于在达到五个健康受试者执行的任务期间获取运动学和生理信号。提取了每个运动试验的开始运动数据,以输入传统的回归模型和训练和测试的深度学习模型。模型可以预测手在平面空间中的位置,这是低级位置控制器的参考位置。结果表明,使用IMU传感器与提出的预测模型具有足够的运动意图检测,与添加EMG或MMG相比,该模型可以提供几乎相同的预测性能。此外,基于复发的神经网络(RNN)模型可以在短发时间窗口中预测目标位置以进行动作,并且适合在更长的视野上预测目标的目标。这项研究的详细分析可以提高辅助/康复机器人的可用性。
摘要:缺乏直观和活跃的人类 - 动物相互作用使使用上肢辅助设备很难。在本文中,我们提出了一个基于学习的新型控制器,该控制器直觉地使用发作运动来预测辅助机器人所需的终点位置。实施了一个由惯性测量单元(IMU),肌电图(EMG)传感器和机械学(MMG)传感器组成的多模式传感系统。该系统用于在达到五个健康受试者执行的任务期间获取运动学和生理信号。提取了每个运动试验的开始运动数据,以输入传统的回归模型和训练和测试的深度学习模型。模型可以预测手在平面空间中的位置,这是低级位置控制器的参考位置。结果表明,使用IMU传感器与提出的预测模型具有足够的运动意图检测,与添加EMG或MMG相比,该模型可以提供几乎相同的预测性能。此外,基于复发的神经网络(RNN)模型可以在短发时间窗口中预测目标位置以进行动作,并且适合在更长的视野上预测目标的目标。这项研究的详细分析可以提高辅助/康复机器人的可用性。
提供机载传感器数据的直接地理参考 Leica IPAS20 通过严格的卡尔曼滤波器将精确的 GNSS 解决方案与原始 IMU 测量相结合。Leica IPAS20 提供的 IMU 基于光纤、环形激光或干调陀螺仪技术。每种 IMU 类型都以高数据速率(从 200Hz 到 500Hz)测量精确的速度增量和角度增量。Leica IPAS20 将 IMU 测量的出色短期精度与 GPS 解决方案的长期稳定性相结合,在整个任务期间产生高度精确的位置、速度和方向。卡尔曼滤波器将同时估计来自加速度计和陀螺仪的误差。Leica IPAS20 还可以估计 GNSS 天线和传感器参考中心之间的杠杆臂。估计的实时解决方案(包括位置、速度和滚动、俯仰和航向)可用于飞行管理,也可用于控制其他传感器。滚动、俯仰和航向可以作为稳定支架(如 Leica PAV30)的数字信号输出,以提高支架的精度。或者,它们可以作为模拟信号输出以控制其他传感器功能,例如 Leica ALS50 激光扫描仪的滚动补偿。灵活且可扩展的机载系统 Leica IPAS20 系统由 Leica IPAS20 控制单元和集成的 GNSS 接收板、GNSS 天线、IMU 和软件组成。该系统专为所有类型的机载传感器而设计:
摘要 目的。体机接口 (BoMI) 建立了一种操作各种设备的方法,让用户能够利用脊髓损伤或中风后仍可用的肌肉和运动冗余来扩展其运动能力的极限。在这里,我们考虑了两种信号的整合,即来自惯性测量单元 (IMU) 的运动信号和用肌电图 (EMG) 记录的肌肉活动,这两种信号都有助于 BoMI 的运行。方法。由于 IMU 和 EMG 信号的性质不同,直接组合它们可能会导致控制效率低下。因此,我们使用基于非线性回归的方法从 EMG 信号预测 IMU,然后将预测和实际 IMU 信号组合成混合控制信号。这种方法的目标是为用户提供在运动和 EMG 控制之间无缝切换的可能性,使用 BoMI 作为促进选定肌肉参与的工具。我们在 15 名未受损参与者的队列中以三种控制模式(仅 EMG、仅 IMU 和混合)测试了界面。参与者通过引导计算机光标经过一组目标来练习伸手动作。主要结果。我们发现,所提出的混合控制可实现与基于 IMU 的控制相当的性能,并且明显优于仅使用 EMG 的控制。结果还表明,混合光标控制主要受 EMG 信号的影响。意义。我们得出结论,将 EMG 与 IMU 信号相结合可能是针对肌肉激活的有效方法,同时克服了仅使用 EMG 的控制的局限性。
机器人和人工智能(AI)的融合正在彻底改变音乐和娱乐领域。机器人正在从执行以服务为导向的任务到具有潜在的情感参与的先进人类机器人互动(HRI)。对机器人表现力的追求在音乐和娱乐机器人的建模,设计和控制中提出了新的挑战和机遇。当前的研究主要是针对能够操纵各种乐器的机器人的设计和物理实施(Wang等,2022; Lim等,2012),而实时HRI的社会智能机器人的开发仍未被倍增。随着AI的进步,机器人现在可以组成和即兴创作,并在HRI期间解释和应对人类情感状态(McColl等,2016; Wang等,2024)。该研究主题始于介绍AI驱动的音乐和娱乐机器人的最新发展。由于电话的结果,本研究主题已接受和收集了六篇论文。这些文章对各种艺术形式进行了全面的探索,包括在钢琴,小提琴,吉他,鼓和马里姆巴等乐器上唱歌,舞蹈和音乐表演。图1显示了这些研究中研究的音乐机器人的概述。在贡献的作品中,两篇文章着重于灵巧的操纵和感觉运动协调。Gilday等。引入了一个通用系统,该系统具有一个能够弹钢琴和表演吉他弹奏的参数手。与现有的定制机器人音乐系统不同,该提议的手被设计为单件3D打印结构,通过调制机械性能和驱动模式,证明了在娱乐应用中增强表现力的潜力。这项研究强调,利用系统 - 环境相互作用可以实现具有简化控制的多种多样的,多功能的功能和可变播放样式。而不是乐器弹奏,而是Twomey等。使用手臂上的可穿戴软传感器研究了舞蹈性能,以探索这种设备是否可以增强艺术表达。舞蹈运动是在虚拟质量弹簧阻尼器系统中以山液的形式建模的,并在本地框架中分析了肢体,以避免通常与IMUS相关的漂移问题。作者提出了一种并行算法来检测
许多著名的研究工作[40,53,70]强调了准确的全身姿势估计的重要性,尤其是在涉及多个身体部位的行动成为信息交换的基本渠道的情况下。这尤其是在运动员训练[50],运动教练[42]和运动康复[11,61]等领域的应用。在这些情况下,从全身姿势中提取详细的运动学特征的能力对于这些交互式系统的有效操作至关重要。但是,在开放和现实世界中实施姿势捕获系统构成了巨大的挑战。这在很大程度上是由于目标运动在各个空间位置及其行动的多样性的不可预测性。此外,要考虑到幼稚用户的可接受性至关重要,尤其是当他们需要佩戴设备或留在特定区域以享受服务时。为了在用户舒适度和姿势估计精度之间达到平衡,我们寻求一种多功能,灵活和交互式的副驾驶,当他们在空旷的区域移动和行动时,可以积极了解用户的骨骼姿势。鉴于机器人技术的最新进展,采用视觉机器人为此目的成为有前途的解决方案。尽管如此,这在用视觉系统驱动机器人时构成了独特的挑战和问题。在这项探索性工作中,我们针对一个中心问题:如何使视觉机器人适应其位置和观点,以跨不同空间位置和动作类型进行最佳姿势估计?工作这对于基于视觉的系统至关重要,因为固定视角和用户的不同方向引起的遮挡可以显着降低准确性。解决这些问题时,本文介绍了Pepperpose,这是与类人生物机器人集成的以姿势估计为中心的机器人系统[6]。我们训练了机器人在移动目标时积极跟踪他们,并调整观点以改善姿势估计结果。因此,Pepperpose可以充当基本的动作感应平台,该平台消除了用户对戴其他设备或留在受限区域内的需求。我们在涉及30名参与者的现实世界中评估了该系统的性能。,我们通过利用从参与者的全身运动捕获诉讼中获得的同步高保真姿势来量化其姿势估计的精度,从而整合了惯性测量单元(IMUS),其轨道损失率以及向各种参与者行动中的最佳观察位置移动到最佳观察位置的速度。虽然这种机器人的当前成本可能无法承受,但我们强调了机器人姿势估计解决方案的潜力,该解决方案可能会提供更丰富的交互机会,对用户体验的影响很小。
Google无人驾驶汽车是一款自动驾驶的汽车,可以安全,合法和舒适地在道路上航行。它结合使用Google地图,硬件传感器和人工智能软件来控制其运动。该项目由塞巴斯蒂安·瑟伦(Sebastian Thrun)领导,他还共同发明了Google Street View,并赢得了2005年DARPA大挑战赛。汽车将Google地图与各种硬件传感器集成在一起,包括LiDAR,摄像机,距离传感器和位置估算器。LIDAR技术使汽车可以测量最多60米的距离,而摄像机检测到即将到来的交通信号灯。距离传感器使汽车能够“查看”附近或即将到来的汽车或障碍物。位置估计器确定车辆的位置并跟踪其运动。人工智能软件从Google地图和硬件传感器接收数据,确定何时加速,放慢,停止或引导轮子。AI经纪人的目标是安全和合法地将乘客运送到所需的目的地。截至2012年,内华达州已经对Google无人驾驶汽车进行了测试,六辆汽车乘以140,000英里,偶尔进行人工干预。这项技术有可能彻底改变全球运输系统。回顾我在2014-2015学年在浦那大学的工程旅程,在AISSMS-SCOE的Gaikwad和Head Computer Engineering系的指导下,这是令人难以置信的启发性。我最真诚的感激之情延伸到A.M. Jagtap教授,他不仅提供了宝贵的指导,而且在整个学术期限内都为我提供了支持。自动驾驶汽车将控制驾驶,使用传感器来检测障碍物并相应地调整速度。这需要多种技术,包括车道检测,障碍物检测,自适应巡航控制,避免碰撞和横向控制。此外,传感器将监视道路状况,调整速度以确保安全行驶。完全自动化汽车是一项复杂的任务,但是在单个系统中取得了进步。配备了雷达,激光镜头和摄像机的Google的机器人汽车可以快速,准确地处理信息,从而做出决策并比人类更好地实施它们。这项技术有可能减少与交通相关的伤害和死亡,同时优化能源使用和道路空间。该系统结合了来自包括Google Street View在内的各种来源的数据,以创建完全自主的驾驶体验。过道Coe,浦那。车辆的转向和制动系统由通用处理器直接控制。该系统从各种来源接收感官输入,包括LiDar,Radar,位置估计器和Street View图像。LIDAR创建了一个三维平台,用于映射障碍物和地形。相机视觉馈电用于检测交通信号的颜色,使车辆能够相应地移动。同时,处理器不断与发动机控制单元进行通信。发动机控制单元具有硬件传感器,包括雷达,它使用无线电波来检测对象并确定其范围,高度,方向或速度。视觉选择会影响角分辨率和检测范围。雷达技术具有多种应用,例如空中交通管制,天气监测和军事系统。高科技雷达系统能够从高水平的噪声中提取物体。雷达系统以预定的方向传输无线电波,然后将其反映和/或被对象散射。反射回发射器的信号使雷达成为可能。如果一个物体移动更近或远,则由于多普勒效应,无线电波的频率发生了略有变化。雷达接收器通常位于发射器附近,电子放大器加强了接收天线捕获的弱信号。还采用复杂的信号处理方法来恢复有用的雷达信号。雷达系统在长范围内检测物体的能力是由于它们通过的介质对无线电波的吸收较弱。雷达系统依赖于他们自己的传输,而不是自然光或对象发射的波,通常是为了避免检测到某些对象,除非需要进行预期的检测。雷达技术使用人工无线电波照亮物体,尽管在数字信号处理和噪声水平提取方面具有高科技功能,但该过程使人眼或相机看不见。相反,LiDAR(光检测和范围)系统利用从激光器来测量目标的距离和特性的光脉冲,其应用涵盖了各个领域,例如地质和遥感。孔镜或梁分离器用于收集返回信号。1。与雷达不同,Lidar不使用微波或无线电波,从而与传统的雷达技术不同。它在大气研究,气象学甚至月球着陆任务中的使用都证明了其在不同地区的潜力。雷达和激光雷达系统之间的选择取决于特定要求,例如要检测到的对象的类型,环境条件和技术能力。与较短的红外激光器不同,机载的地形图映射激光雷达通常使用1064 nm二极管泵式YAG激光器,而测深的系统则使用532 nm的频率加倍激光器,因为后者能够以较少的衰减渗透水穿透水。图像开发的速度也受到系统中的扫描速率的影响,可以通过各种选项(例如双振荡平面镜或与多边形镜的组合)实现。固态照片探测器(例如硅雪崩光电二极管)和激光射击中的光电构皮之间的选择至关重要,接收器的敏感性是在激光雷达设计中需要平衡的另一个参数。非扫描系统(例如“ 3D门控观看激光雷达”)应用脉冲激光器和快速门控相机进行3D成像。在移动平台(例如飞机或卫星)中,需要仪器,包括全球定位系统接收器和惯性测量单元(IMU),以确定传感器的绝对位置和方向。这允许使用扫描和非扫描系统进行3D成像。每个卫星都会传输包括精确的轨道信息,一般系统健康以及所有卫星的粗糙轨道的消息。2。全球定位系统(GPS)在所有天气条件下都提供位置和时间信息,从地球上方的GPS卫星发送的准确的时序信号来计算其位置。接收器使用这些消息来确定运输时间,计算到每个卫星的距离,并使用三尾征来计算接收器的位置。然后以派生信息(例如根据位置变化计算出的方向和速度)显示此位置。在此处给出的文字Google Street View使用各种技术来捕捉全球街道的全景。专门的GPS应用程序同时使用位置和时间数据,包括用于交通信号的时机以及手机基站的同步。位置传感器(例如旋转器编码器)用于工业控制,机器人技术和其他需要精确轴旋转的应用。该系统由15个摄像头的玫瑰花结成,带有5百万像素CMOS图像传感器和自定义镜头。新一代的相机可以改善分辨率,取代了早期的相机。Google Street View显示了特殊改装的汽车的图像,但还使用替代方法来用于无法通过汽车(例如Google Trikes或Snowmobiles)进入的区域。这些车辆具有定向相机,GPS单元,激光范围扫描仪和3G/GSM/Wi-Fi天线。高质量的图像现在基于开源硬件摄像头。街道视图图像在放大地图和卫星图像后出现,可以通过将“佩格曼”图标拖到地图上的位置来访问。在交叉和交叉点处,显示了其他箭头。3。4。通过照片中的固体或损坏的线可视化相机汽车的路径,箭头指向每个方向的后续图像。人工智能软件过道COE,Pune使用控制单元。人工智能是旨在创建智能机器的计算机科学领域。智能代理人感知其环境并采取行动以最大程度地提高成功。Xeon处理器是一个多核处理器,最多8个执行核,每个核心支持两个线程。每个核心的共享指令和数据中级缓存处理实时传感器值和一般处理。两个Cortex-A9处理器处理转向和制动系统。异质计算是指使用各种计算单元(例如通用处理器或自定义加速逻辑)的电子系统。传感器数据获取:人类的感知经历了程序的运行,传感器数据采集涉及从各种传感器中收集和处理环境数据,包括LIDARS,CAMERAS和GPS/INS。JAUS互操作通信:无人系统的联合体系结构是由美国国防部开发的,为无人系统创建开放的建筑,Labview在其开发中起着至关重要的作用。驱车系统过热COE,浦那19 25。使用机电执行器和人机界面用电子系统替换传统的机械控制系统,从而消除了诸如转向柱和泵等组件。5。早期的副驾驶系统将演变成汽车运动员。算法:一种算法用于接收和解释从领导者车辆的位置数据,模仿其导航属性以准确遵循设定路径,并利用诸如面包屑位置和立方样条拟合的技术。逐线技术6.乘线技术驱动驱动线将技术与人工智能和算法相结合,仅控制三个驾驶零件:转向,制动和油门,取代传统的机械系统。通过电线技术进行电子驱动器及其应用的电子驱动技术涉及从车辆控制系统中消除传统的机械组件,并用电子传感器,计算机和执行器代替它们。DBW的优点包括通过计算机控制的干预来提高安全性,例如电子稳定控制(ESC),自适应巡航控制和车道辅助系统。此外,DBW提供的设计灵活性扩大了车辆定制选项的数量。但是,由于更高的复杂性,开发成本和安全性所需的冗余要素,实施DBW系统的成本可能会更高。另一个缺点是,制造商可能会降低某些范围内的油门灵敏度,以使车辆更容易或更安全。电子动力转向(EPS)是通过电线技术对驱动器进行的常见应用,该技术使用具有可变功率辅助的电子驱动转向系统。EPS系统在较低的速度下提供更多的帮助,而在较高速度下的援助则比液压系统更节能。电子控制单元(ECU)根据方向盘扭矩,位置和车辆速度等因素来计算所需的辅助功率。有四种形式的EPS:列辅助类型,小齿轮辅助类型,直接驱动类型和机架辅助类型。这些系统具有独特的优势,例如低惯性和摩擦,对各种汽车模型的适应性以及补偿单方面力量的能力。总体而言,电线技术的电子驱动器在车辆控制系统中提供了提高的安全性,灵活性和能源效率,这使其成为制造商的流行选择。在无人驾驶汽车中,使用算法和馈送到ECU的数据计算转向角度和扭矩,从而可以免提操作。6.3电线技术制动器用电子传感器和执行器代替了传统的机械制动系统,从而提供了减轻体重,较低的操作噪声和更快的反应时间等好处。但是,冗余制动系统对于安全性至关重要,在主要系统故障的情况下激活。电线技术的制动器使用雷达和激光镜输入来计算制动踏板传感器,从而使驾驶员无法施加制动器。使用电线技术的6.4节气门用电子控制代替了加速器踏板和油门之间的机械连接,并使用诸如加速器踏板位置,发动机速度和车辆速度等传感器来确定所需的油门位置。此设置提高了无缝的功率训练一致性,并促进了诸如巡航控制,牵引力控制和防止系统等功能的集成。运输官员的头等重点是流畅的流量。减少排放,燃油消耗减少,COE,Pune驾驶,带踏板位置无关,等等,辅助,空气燃料混合控制,减少排气排放。还与汽油直接注射技术,Aissms COE,Pune一起使用,许多地区正在开发许多区域,以允许人们使用它们,尤其是出租车服务,驾驶员由于各种原因而需要这份工作。当自动驾驶汽车能够执行没有额外的人的任务时,涉及人类服务的工作就会开始减少。这种现象类似于由自动驾驶汽车引起的大规模工作,这些汽车可以更有效地执行任务。自动驾驶汽车有可能彻底改变交通流量,而人类驾驶员可以选择破坏交通法律。随着自动驾驶汽车变得越来越普遍,交通拥堵将大大减少,从而使合并并退出高速公路。流量的减少将导致经济改善和平均燃油经济性的改善,以及由于其他车辆的一致性而导致的燃料消耗降低。3)燃油经济性自动驾驶汽车将消除不必要的加速和制动,以最佳的性能水平运行,以达到最佳的燃油效率。即使提高了1%的燃油效率,仅在美国就可以节省数十亿美元。通过实施自主安全系统,可以实现卓越的燃油效率。4)时间成本每天的价值在增加,自动化汽车可以为居住在繁忙城市的个人节省大量的时间。即使没有考虑货币价值,还有更多的时间进行休闲活动也会提高生活标准。降低由于流量而浪费的时间将使人们能够准时,更具动态并提高工作效率。期货距离自动驾驶汽车的过渡带来了一些好处,包括减少交通拥堵,提高燃油经济性和提高生产率。但是,它还引起了人们对设备成本,复杂的人工智能软件以及非理想道路条件对系统性能的潜在影响的担忧。demerits:1)高设备成本:使用高级技术,例如雷达,激光雷达,位置传感器,GPS模块,多核异质处理器和高分辨率摄像头很昂贵。2)复杂的AI软件:用于机器人汽车的人工智能软件的设计和实施是复杂的任务。3)多样化的道路条件:非理想的道路条件可能会影响软件做出的决策,从而可能影响系统性能。4)专业驾驶员结构的失业将大大减少许多与交通相关的问题。自动驾驶汽车可以更有效地利用道路,从而节省空间和时间。狭窄的车道将不再是一个问题,大多数交通问题将通过这项新技术的帮助最小化。研究表明,使用自动驾驶汽车,交通模式将变得更加可预测,而且问题越来越小。汽车制造商已经在高端型号中纳入了驱动程序辅助系统,这一趋势预计将继续。为了实现这一目标,需要进行广泛的研究和测试。随着智能车辆变得越来越普遍,公共部门的积极主动方法将决定何时到达这些福利。目前,存在各种技术来帮助自动驾驶汽车开发,例如GPS,自动巡航控制和巷道保持援助。这些技术可以与其他其他技术结合使用,例如基于视频的车道分析,转向和制动驱动系统以及编程控件,以创建一个完全自主的系统。主要挑战是获得公众信任,以允许计算机驾驶车辆。不会立即接受该产品,但是随着系统变得更加普遍,揭示其收益,随着时间的流逝,该产品会随着时间的流逝而获得接受。实施自动驾驶汽车将引起人们对可以执行任务的计算机代替人类的担忧。但是,社会不会立即改变;取而代之的是,随着这些车辆融入日常生活,随着时间的流逝,它将变得更加明显。2010年第11届国际控制,自动化,机器人技术和愿景国际会议(ICARCV)提出了一份名为“智能车辆导航方案”的研究论文。会议诉讼位于当年出版物的第1809-1814页。此外,2013年Kollam的T.K.M理工学院的研讨会报告探索了自动驾驶汽车的概念。A. Frome的一篇论文,“ Google Street View中的大规模隐私保护”,在2009年的第12届IEEE国际计算机视觉会议(ICCV 09)上发表了。该报告与来自浦那的Aissms Coe的研究人员合着。此外,罗尔夫·伊斯曼(Rolf Isermann)在2011年发表了《国际工程研究技术杂志》(IJERT)的第22卷。Google Street View开发的关键人物 Sebastian Thrun也是将Google的街头图像与人工智能软件相结合的先驱,以创建创新的导航系统。 他的工作为他赢得了美国国防部的重大认可和大量赠款。Sebastian Thrun也是将Google的街头图像与人工智能软件相结合的先驱,以创建创新的导航系统。他的工作为他赢得了美国国防部的重大认可和大量赠款。
“美国城市、城镇、社区、州、县、大都市区、邮政编码、区号和学校的本地指南。” 76 次观看45 次观看49 次观看39 次观看41 次观看36 次观看36 次观看37 次观看33 次观看37 次观看35 次观看35 次观看36 次观看40 次观看34 次观看45 次观看36 次观看39 次观看27 次观看35 次观看25 次观看37 次观看35 次观看32 次观看26 次观看29 次观看41 次观看24 次观看43 次观看25 次观看35 次观看30 次观看39 次观看27 次观看27 次观看30 次观看27 次观看22 次观看31 次观看30 次观看24 次观看26 次观看26 次观看31 次观看31 次观看29 次观看22 次观看40 次观看26 次观看24 次观看30 次观看40 次观看25 次观看26 次观看25 次观看19 次观看93 次观看80 次观看69 次观看84 次观看61 次观看63 次观看70 次观看83 次观看91 次观看105 次观看52 次观看57 次观看89 次观看67 次观看74 次观看88 次观看71 次观看55 次观看82 次观看52 次观看80 次观看73 次观看49 次观看69 次观看51浏览次数56 浏览次数56 浏览次数55 浏览次数60 浏览次数41 浏览次数65 浏览次数50 浏览次数65 浏览次数50 浏览次数41 浏览次数43 浏览次数52 浏览次数45 浏览次数55 浏览次数49 浏览次数43 浏览次数52 浏览次数62 浏览次数49 浏览次数44 浏览次数 从 0 天 0 小时 00 分钟 00 秒 分享此优惠 送货需要至少 7 个工作日才能发货 购买的物品可以从我们的办公室领取或送货 物品必须在 2021 年 6 月 27 日之前领取/收到 未在 2021 年 6 月 27 日之前领取/收到的物品将被没收,不予退款 您的产品可立即领取 - 详情请参阅下文 无现金价值/无现金返还/不退款 立即检查产品;自收到产品之日起 7 天内有缺陷退货,前提是退回的物品未使用且