•试样:肿瘤和匹配的正常(周围血液或唾液)•在所有648个基因中检测到SNV(单核苷酸变异)和indels•在ERBB2(HER2)中报告了8或更多的拷贝数8或更多的拷贝数(HER2),当Tumor百分比为≥30%•Genomic Recranter in dranemienty•Genomic Recranter•DNA在9个基本中•DNA•DNA在9个基本中•DENA在9个基本中•DNA在9个基本中•DNA•DENA在9个基本中•DNA•DNA在9个基本中•DENA•DENA在9个基本中•DNA•DENA在9个基本中•DNA•均匀的副本扩增。 XT报告中包括突变负担•平均覆盖率〜500x
《自然》杂志上发表的一篇文章( Anzalone 等人,2019 年)报道了一种基因组编辑实验方法的开发,该方法无需双链断裂 (DSB) 或供体 DNA (dDNA) 模板,即可介导人类基因组中所有可能的碱基到碱基的转换、“插入/缺失”和组合。Prime 编辑是一种新颖的基因组编辑方法,它利用一种比平常更长的单向导 RNA (gRNA),称为 Prime 编辑 gRNA (pegRNA),以及一种由 Cas9 H840A 切口酶与工程逆转录酶 (RT) 融合而成的融合蛋白。Prime 编辑被描述为“搜索和替换”碱基编辑技术,它在 gRNA 的延伸中提供所需的遗传构建体,然后使用 RT 酶将其转化为 DNA。与传统的 CRISPR-Cas 设备相比,新方法无需同时递送校正 DNA 模板,可执行所有可能的核苷酸替换(包括针对相当一部分遗传疾病的替换),解决插入/缺失引起的移码问题,并减少脱靶编辑。Prime 编辑是对现有 CRISPR 编辑系统的一个令人兴奋的新补充,在许多情况下甚至可能是一种改进。然而,Prime 编辑带来了新的挑战。克服这些障碍并在体内应用 Prime 编辑,将带来针对罕见遗传疾病的新型基因组编辑疗法。
食物过敏是全球一个主要的健康问题。现代繁殖技术,例如通过CRISPR/CAS9进行基因组编辑,有可能通过靶向植物中的过敏原来减轻这种情况。这项研究介绍了主要的过敏原胸罩J i,这是2S白蛋白类的种子储存蛋白,在异形棕色芥末(Brassica Juncea)中。印度基因银行加入(CR2664)和德国品种Terratop的副卵形植物使用具有多个单一指南RNA的二进制载体的农业杆菌进行了转化,以引起大型删除或两种Bra J I or词的大型删除或Frameshift突变。总共获得了49 T 0线,最多3.8%的转化效率。在胸罩J ib等位基因中,四行的删除为566,最高790 bp。在18条Terratop t 0线中,有9条带有靶向区域的indels。从16个分析的CR2664 t 0行,14行持有的indels和3个具有四个Bra J I等位基因突变。CRISPR/CAS9引起的大多数突变是t 1后代遗传的。在一些编辑的线中,种子的形成和生存能力降低,种子显示出胚胎的早熟发育,导致滴虫已经破裂。使用新开发的BRA J I特异性抗体进行免疫印迹,显示了所选系的种子提取物中要降低或不存在的胸罩J I蛋白的量。从芥末中去除偏远的决定因素是迈向开发更安全的食品作物的重要第一步。
图 2:使用核转染提供的 Cas9-mRNA 核酸酶、合成 sgRNA 和 ssDNA 寡核苷酸修复模板对 iPSC 进行基因编辑不会对 iPSC 形态造成干扰,可用于对基因组进行微小改变。A) 核转染后 48 小时拍摄的相位图像。比例尺为 100 μm。BC) 分析 LMNA 基因座 (B) 和 MYH7 基因座 (C) 中具有指定所需编辑 (蓝色) 或不需要的 INDEL (灰色) 的总 NGS 测序读数百分比。
NHEJ修复途径是最活跃的修复机制,经常导致核苷酸(Indels)的小插入或缺失到DSB位置。由NHEJ介导的DSB修复的随机性具有重要的实际意义,因为表达Cas9和ARNG的细胞群将导致广泛的突变。在大多数情况下,NHEJ在靶DNA中产生了小散析,从而导致氨基酸框架中的缺失,插入或突变导致靶向基因的开放式读数(ORF)中的过早终止密码子。理想的最终结果是突变,靶向基因的功能损失。但是,必须通过实验验证给定突变细胞的“敲除”表型的强度。
为了充分发挥基因编辑技术在临床治疗中的巨大潜力,需要彻底评估靶向编辑和非预期编辑的后果。然而,目前缺乏一种全面、流水线化、大规模且经济的工作流程来检测基因组编辑结果,特别是插入或删除大片段。在这里,我们描述了一种通过对条形码长距离 PCR 产物进行纳米孔池测序来有效准确地检测 CRISPR-Cas9 编辑后的多个基因变化的方法。为了克服纳米孔测序的高错误率和插入缺失,我们开发了一种流程,通过对纳米孔扩增子测序 (GREPore-seq) 的读取进行 grepping 来捕获条形码序列。GREPore-seq 可以检测 NHEJ 介导的双链寡脱氧核苷酸 (dsODN) 插入,其准确度与 Illumina 下一代测序 (NGS) 相当。GREPore-seq 还可以识别 HDR 介导的大基因敲入,这与 FACS 分析数据高度相关。还检测到了 HDR 编辑后的低水平质粒骨架插入。我们建立了一个实用的工作流程来识别遗传变化,包括量化 dsODN 插入、敲入、质粒骨架插入和 CRISPR 编辑后的大片段缺失。该工具包用于对汇集的长扩增子进行纳米孔测序,在评估靶向 HDR 编辑和超过 1 kb 的意外大插入缺失方面应具有广泛的应用。GREPore-seq 可在 GitHub 上免费获取(https://github.com/lisiang/GREPore-seq)。
Guardant360®是一种基于定性的下一代测序测试,它使用靶向高吞吐杂交捕获技术检测74个基因中的单核苷酸变体(SNV),插入和删除(Indels),拷贝数扩增(CNAS)中的18(18)Genes in 6(18)Genes in六(6)(6)(6)(6)。Guardant360利用无细胞的DNA(CFDNA)从无细胞DNA血液收集管(BCT)中收集的外周全血的血浆中。Guardant360提供了基因组结果,包括使用常规的血液抽血在实验室的样品收据中7天内在7天内进行基因组结果,从而消除了仅依靠组织测试的需求。Guardant360为晚期固体癌症患者提供明智的治疗决策,并在一线治疗或进展前确定患者的治疗选择或临床试验。
使用CRISPR/CAS9系统进行基因编辑是一种非常有效的方法,用于在永生细胞系的基因组DNA中产生突变。此过程从一个直接的克隆步骤开始,以生成编码CAS9酶的单个质粒以及合成指导RNA(SGRNA),该质子(SGRNA)被选为靶向基因组中的特定位点。该质粒单独将其转染到细胞中,以通过非同源末端连接途径在所需的基因座上产生随机的插入缺失等位基因(“ indels”),或与同源性的有向修复模板寡核核苷酸一起产生特定点突变。在这里,我们描述了在IMCD3和HEK293细胞中执行基因编辑的程序,并随后分离带有感兴趣的突变的克隆细胞系。
缩写:下一代测序 (NGS)、第三代测序 (TGS)、人类白细胞抗原 (HLA)、纯合区域 (ROH)、B 等位基因频率测序 (BAF)、全外显子组测序 (WES)、全基因组测序 (WGS)、质量控制 (QC)、插入和缺失 (InDels)、结构变异 (SV)、拷贝数变异 (CNV)、聚合酶链式反应 (PCR)、变异调用格式 (VCF)、基因组 (G)VCF、整合基因组学查看器 (IGV)、平衡染色体重排 (BCR)、碱基对 (bp)、兆碱基 (Mb)、读取深度 (RD)、分割/剪辑读取 (SR)、读取对 (RP)、基于组装 (AB)、单核苷酸多态性 (SNP)、单分子实时测序 (SMRT)、零模波导 (ZMW)、差异甲基化探针(DMP)、差异甲基化区域(DMR)
ENGEN突变检测试剂盒提供了用于检测目标基因组编辑事件的试剂。在第一步中,使用Q5热启动High-Fidelity 2X Master Mix放大了来自基因组的靶向区域(即CRISPR/CAS9,TALES,锌指核酸酶)。在变性和重新进行重新进行后,当插入和缺失(Indels)中存在于扩增子池中时,就会形成异质化合物。在第二步中,将退火的PCR产物用Engen T7核酸内切酶I消化,这是一种特定于结构的酶,将识别大于1碱基的不匹配。存在不匹配时切割DNA的两个链,从而导致形成较小的片段。对所得片段的分析提供了基因组编辑实验效率的估计。