图5。TBK1和IKKβ结构域组织的结构比较。 a)TBK1 KU D135N结构,显示了激酶结构域(KD)和泛素样域(ULD),具有插图的TBK1和IKKβKD。 (b)位于IKKβ杂质内的TBK1 KU D135N结构显示与IKKβ的支架二聚域(SDD)的兼容性。 与SDD相互作用的残基以紫色突出显示。 注意。 改编自“转载体磷酸化的储罐结合激酶1的分子基础”。 https://doi.org/10.1073/pnas.1121552109。 Ser172的磷酸化触发TBK1激活所需的构象变化,TBK1和IKKβ结构域组织的结构比较。a)TBK1 KU D135N结构,显示了激酶结构域(KD)和泛素样域(ULD),具有插图的TBK1和IKKβKD。(b)位于IKKβ杂质内的TBK1 KU D135N结构显示与IKKβ的支架二聚域(SDD)的兼容性。与SDD相互作用的残基以紫色突出显示。注意。改编自“转载体磷酸化的储罐结合激酶1的分子基础”。https://doi.org/10.1073/pnas.1121552109。 Ser172的磷酸化触发TBK1激活所需的构象变化,https://doi.org/10.1073/pnas.1121552109。Ser172的磷酸化触发TBK1激活所需的构象变化,Ser172的磷酸化触发TBK1激活所需的构象变化,
图 3. 微生物全细胞生物电子装置的电化学分析。使用 (a) 裸 ITO 玻璃和 (b) PEDOT:PSS/PHEA 涂层工作电极对生物和非生物电化学反应器进行计时电流测量。插图显示非生物电流密度。反应器接种了 S. oneidensis 以进行生物测量,虚线标记。非生物测量包含培养基。电化学反应器的工作电极平衡在 +0.2 V vs Ag/AgCl,并使用 20 mM 乳酸作为 S. oneidensis 的碳源。在 43 小时的计时电流实验后,在 (c) 裸 ITO 玻璃和 (d) PEDOT:PSS/PHEA 涂层电极上对生物和非生物样品的循环伏安图(扫描速率:10 mV s -1)。
图 1:深度神经网络硬件 (a) 由通过突触(箭头)连接的多层神经元(圆圈)组成的深度神经网络。(b) 连接两层神经元的忆阻交叉阵列 21。插图表示单个忆阻器单元,垂直连接一行和一列。突触前 CMOS 神经元(红色)向行施加电压。每列的输出电流 Ij 是所有输入电压 Vi 乘以忆阻器电导 Gij 的总和。每列的放大器驱动突触后 CMOS 神经元(蓝色)。(c) 由圆形谐振器组成的光学神经网络,将不同波长 λ i 输入(不同颜色)耦合到神经元(灰色)22。突触(橙色方块)和神经激活功能(绿色方块)由相变材料实现。
图3:li稳定性和Allzofim的短路电阻。(a)Allzo电解膜的电流响应在Li +从LI计数器电极到PT工作电极的电化学运输后,并反向相反。数字表示进行阻抗光谱测量的点。(b)在多个拼布和剥离的步骤后,AllzoFim部件与LI金属接触的阻抗响应的Nyquist图。插图显示了从阻抗光谱中提取的电解质电阻的演变。(c)对称LI/LI/LI细胞配置中Allzo电解质膜的电静脉反应。正向和反向电流密度范围为0。2 mA cm - 2最多3。2 mA cm -2以0的步骤施加。1 mA H CM - 2。
图1:项目合作伙伴机构的文本和位置中提到的InterReg DGE-Rollout站点的位置。Also illustrated are the sedimentation areas of the Dinantian rocks in the continental Interreg NWE Area: ASA – Avesnes Sedimentation Area, BSA – Boulonnais Sedimentation Area, CB – Campine Basin, CSA – Condroz Sedimentation Area, DSA – Dinant Sedimentation Area, ERM – Eastern Rhenish Massif, HSA – Hainaut Sedimentation Area, LBM – London-Brabant Massif, NSA – Namur Sedimentation Area, PSA – Picardie Sedimentation Area, SENL – Southeast Netherlands, SGSA – Saint Ghislain Sedimentation Area, SL – Sauerland, SWNL – Southwest Netherlands, VA – Velbert Anticline, VASA – Vesdre Aachen Sedimentation Area, VSA – Visé Sedimentation Area (modified after Poty 2016).插图:InterReg NWE区域的轮廓。
图 2. ZnO-TFTs 阵列的电气、机械和光学特性。 (A) VD = 5V 时具有不同 W/L 比的 TFT 的传输曲线。 (B) W/L = 80/5 的 TFT 的输出特性,显示漏极电流 (ID) 与 VD 的关系,VG 从 -1 V 变化至 5 V(步长 = 1 V)。 (C) 一个阵列的十二个 ZnO-TFTs 电极的传输特性。红线为平均值。 (D) 来自同一阵列的十二个 ZnO-TFTs 电极的跨导。蓝线为平均值。 (E) ZnO-TFTs 电极在弯曲半径为 15 cm 的情况下经过 10 次弯曲循环后仍保持稳定的电气特性。 (F) ZnO-TFTs 阵列的透射光谱。插图是 3 × 4 ZnO-TFTs 阵列的光学图像,显示了其高透明度。白色框架标记电极阵列。比例尺:2 毫米。
图 1. (a) 单层 (1L) MoSe 2 和 ReS 2 晶体结构。上图显示晶体结构的侧视图,下图显示晶体结构的顶视图。侧视图显示了这些层状材料上偶极子平面内取向的示意图。(b) 样品 1 (S1) 的 ReS 2 -MoSe 2 异质结构的光学图像。插图是样品侧视图的示意图。(c) MoSe 2 、ReS 2 和 HS 区域的拉曼光谱。HS 拉曼光谱由来自各个 1L 区域的不同振动模式组成。(d) 在透明蓝宝石基板上制作的类似异质结构的三个不同区域的吸收光谱数据(样品 2,S2)。MoSe 2 A 和 B 激子峰清晰可见,ReS 2 较低能量吸收峰用箭头标记。HS 光谱由两个 1L 区域的峰组成。
图 2:金刚石在双层 (a) 和多层 (b) 薄膜厚度方向上的热导率,从薄膜底部向上 (从薄到厚,虚线),从顶部向下 (从厚到薄,实线)。模型使用散射受限建模 (粗蓝线和虚线,无方向差异) 和受限声子群体模型 (红线和虚线) 展示。自上而下,两种建模方法匹配。然而,自下而上,受限声子模型导致厚膜热导率有限,因为入射声子群体中缺乏长波声子。这导致热导率的显著差异和较大的热整流效应。为了阐明双层和多层配置,插图中提供了带有箭头指示热流方向的卡通图。
图1。(a)单层(1L)Mose 2和Res 2晶体结构。顶部面板显示侧视图,底部面板显示了晶体结构的顶视图。侧视图显示了这些分层材料中偶极子的面内方向的示意图。(b)样品1(S1)的Res 2 -Mose 2异质结构的光学图像。插图是样本侧视图的示意图。(c)来自Mose 2,Res 2和HS区域的拉曼光谱。HS拉曼光谱由单个1L区域的不同振动模式组成。(d)在透明蓝宝石基板上制成的类似异质结构的三个不同区域的吸收光谱数据(样品2,S2)。Mose 2 A和B兴奋峰清晰可见,RES 2用箭头标记较低的能量吸收峰。HS光谱由两个1L区域的峰组成。
