评估 ML 算法的性能 UNIT - I:简介:AI 问题、代理和环境、代理结构、问题解决代理基本搜索策略:问题空间、无信息搜索(广度优先、深度优先搜索、深度优先与迭代深化)、启发式搜索(爬山法、通用最佳优先、A*)、约束满足(回溯、局部搜索) UNIT - II:高级搜索:构建搜索树、随机搜索、AO* 搜索实现、极小极大搜索、Alpha-Beta 剪枝基本知识表示和推理:命题逻辑、一阶逻辑、前向链接和后向链接、概率推理简介、贝叶斯定理 UNIT - III:机器学习:简介。机器学习系统,学习形式:监督学习和无监督学习,强化 – 学习理论 – 学习可行性 – 数据准备 – 训练与测试和拆分。第四单元:监督学习:回归:线性回归、多元线性回归、多项式回归、逻辑回归、非线性回归、模型评估方法。分类:支持向量机 (SVM)、朴素贝叶斯分类
米尔顿凯恩斯 (MK) 是英国经济最成功的新城,经济价值超过 120 亿英镑。2017 年,米尔顿凯恩斯的年总增加值 (% 增长率) 为 2.6%,高于英国所有其他城镇,是伦敦以外英国生产率最高的两个经济体之一。对商业支持服务 Invest Milton Keynes 的咨询中,超过一半来自寻求扩张的公司。MK 吸引了大公司,并以开拓尖端技术而闻名;将数据、机器人、人工智能、物联网 (IoT) 和 5G 置于其成为英国领先智慧城市之一的愿景的核心。米尔顿凯恩斯也是英国发展最快的城市之一。它位于牛津至剑桥弧线的中心位置 - 以及不断增长、随时可用的人才库 - 使其完全有能力实现其技术愿景。
收到日期:2024 年 8 月 14 日 审核日期:2024 年 8 月 16 日 接受日期:2024 年 8 月 19 日 摘要 随着数据隐私法规的发展,零售商面临着适应的压力。采取行动确保您的数字营销和衡量仍然有效现在至关重要。幸运的是,您可以让 Google AI 为您工作,帮助衡量结果、接触和转化有意识的客户,并创造引人入胜的购物体验。隐私不仅是购物者的首要考虑,它也为企业提供了发展的机会。一项亚太地区调查发现,十分之八的人确认在线隐私很重要,十分之七的人会因为品牌违反他们对数据的信任而停止与品牌互动。人工智能监控客户的选择、偏好、品味和购买模式、购买频率以及指定期间内的平均消费金额。它为电子商务公司提供详细的客户信息。因此,这些信息使企业能够根据客户的特定需求和偏好定制产品和服务。通过提供各种产品推荐、折扣和多种优惠策略,人工智能可以帮助客户选择和购买最佳建议/推荐的产品和服务。关键词:降低运营成本、增加收入、吸引客户参与、增强决策能力、提高信用评分。
人工智能已经将计算机的角色从简单的计算机器转变为自主创作的工作生成系统。人工智能不仅帮助机器理解复杂数据并从中学习,而且还帮助机器生成与人类智慧相关的新颖作品。创造性人工智能的兴起对传统的专利范式产生了影响。人工智能创造对专利制度中的发明人标准提出了挑战,该制度不承认非人类实体为发明人。将人工智能驱动的机器视为发明人可能会导致更复杂的问题,而目前的专利制度可能无法解决这些问题。人工智能独立创作的实例增多,引发了有关此类创作的专利性的一些问题。本文讨论了人工智能这一新现象以及机器在无需或极少人工干预的情况下创造发明的实例。本文将进一步探讨与人工智能发明人相关的问题以及它对当前专利制度的影响。
1.1.日常生活中的人工智能例证 1 1.2.未来人工智能 8 2.1。工业革命 4.0 12 2.2.电话银行 14 2.3.工业革命的时代发展 15 3.1.图灵机 19 3.2.图灵机演示 21 3.3.图灵机 22 3.4。图灵机可视化 23 3.5.图灵机转换图 26 4.1.机器学习 29 4.2.黑箱数据处理 32 4.3. Alpha Go 33 4.4。机器学习 34 5.1.深度神经网络 36 5.2.神经元如何工作 37 5.3.神经元数学方程 37 5.4.线性激活函数 38 5.5. Sigmoid 和 Tanh(非线性) 39 5.6。整流线性 39 5.7。具有隐藏层的神经网络架构 40 5.8.具有 2 个隐藏层的神经网络架构 40 6.1。 Matlab 45 7.1。模糊推理系统 52 7.2。清晰集图 54 7.3.模糊集图 55 7.4。脆皮逻辑 56 7.5。模糊逻辑 56 7.5。脆皮逻辑 56 7.6。酥脆套餐 58 7.7.模糊集 59 7.8。三角隶属函数 59 7.9.梯形隶属度 60 7.10 与集合隶属度相关的模糊值。 61 7.11。 1 型模糊逻辑系统结构 63
以及学生数字化社会化的特征,作为制定社会数字化条件下普通中等教育机构教育与发展环境模型社会组成部分设计原则的指导方针。在这一探索中,我们还考虑了设计数字社会教科书的重要组成部分以及针对新方法论原则的教育过程的有针对性的研究程序,不仅使用我们在另一篇文章中披露的案例研究技术(T.F. Alekseenko,2022),而且还使用 Google 表单作为最具社交可访问性的(无论老师和学生的位置和距离如何)和民主的(提供独立选择答案、反思动机、处理客观性以及经验收集信息的必要保密性)。开展各部分的工具和程序也符合面向社会的未来学校教育和发展数字环境模型的补充因素的思想,旨在克服不仅在战争期间而且在战后乌克兰重建中的教育损失和差距。使用来源问卷和诊断工具 - Google Forms(2023 年 10 月 19 日)。 https://sites.google.com/view/it-teachers/google-forms
十多年来,人们普遍认为视频监控对公共安全做出了巨大贡献,既起到了预防作用(作为一种威慑工具),也起到了镇压作用(作为一种识别和发现已经犯下的罪行的肇事者的手段)。数字技术的最新发展赶上并增强了这一设备,开辟了以前无法想象的场景:事实上,借助视频监控摄像头,通过将图像与其他个人数据进行交叉引用,可以识别拍摄的个人,并自动检测可疑行为,记录和报告。由于人工智能的最新发展,这一现象显示出其颠覆性,这可以进一步提高机器的性能。事实上,“智能”视频监控系统能够检测到其视野范围内的人类存在(人类检测)。这使得区分人类和动物成为可能,从而提高了入侵检测系统的效率。此外,智能面部识别功能(面部识别)可识别画面中的人脸并捕捉其体征,确定个人的年龄和性别以及胡须、帽子和眼镜的存在。此外,人工智能可以监控入侵者的可疑行为(徘徊检测)或场所内的聚会(人群分析)。尽管多次尝试控制算法工具,更具体地说,遏制实时生物识别的可能性,但城市地区因紧急情况而进行大规模监视的风险正变得越来越现实。
社会文化维度之外的经济表现。这种态度导致了以下后果:一方面,人类的改造活动和对自然的积极干预被绝对化;另一方面,科技进步的作用被绝对化,在此框架内,以“人工智能”为基础,信息技术设备的应用范围不断扩大。随着以“人工智能”为基础的技术积极渗透到人类活动的各个领域,人们认为人类将失去对科技进步的控制,人类有可能沦为科技附属品。公众思想中出现了一种担忧,即人类可能会失去其存在本质的深层特征,即“人性面孔”。 “人类面部现象是独一无二的,是所有心身现象中最重要的”[7,第 173 页] 10–31]。通过面容,我们可以辨别出一个人是否具有一定的理性;通过面容,我们可以判断他的人类本质。面部现象从精神、灵魂、身体和智力属性的角度代表一个人作为一个个体、作为一个整体的存在。现代本体论和社会人类学的超越导致需要批判地分析技术文化的基本价值并发现新的价值增长点,寻求新的发展战略[5]。在这些战略中,技术领域必须履行其与人相关的服务作用——为人类活动的各个领域提供服务的生产资料。制定目标的特权应该只属于人类,并且在转型人类学策略中应该考虑“面子因素”。本文的目的是确定技术文明的主要人类社会背景。从实现既定目标的角度,提出了作者对人类与“人工智能”之间关系形成问题的思想立场。方法论。作品采用了历史哲学的方法,可以分析“人工智能”在不同文化和历史阶段的发展。系统活动方法使得人们能够根据人脑和机器、生物和人工“神经网络”组织的一般参数来比较人类和“人工智能”的功能,从而概括所研究的材料并得出结论。结果。 “人工智能”(AI)是指
