该工具由 INTRAC 与 Helen Collinson 编写的小型慈善机构宣传工具包联合发布,该工具包是“加强具有远大抱负的小型组织”计划(2021-2022 年)中制作的五套工具包的一部分。该计划由英国外交、联邦和发展办公室 (FCDO) 通过小型慈善机构挑战基金 (SCCF) 能力发展补助金资助
Interac已为监视,评估和学习(MEL)制定了专门用于使用小型非政府组织(NGO)的简洁指南。由安妮·加布特(Anne Garbutt)撰写,该工具包是通过大型野心项目(2021-22)加强小型组织的五个生产之一,该组织旨在加强在国际发展中工作的小型非政府组织。但是,任何小型非政府组织都可以使用它来开发其MEL实践。该工具包包含有关指标的简短部分,可在https://www.intrac.org/resources/monitoring-evaluation-evaluation-and-learning-a-toolkit-for-for-small-ngos/
US 11,016,119 B1 1 2 MONOLITHIC ATOMIC FORCE In view of the above problems , we proposed a novel class MICROSCOPY ACTIVE OPTICAL PROBE of probes for atomic force microscopy ( AFM active optical probe - AAOP ) by integrating a laser source and a photo CROSS REFERENCE TO RELATED detector monolithically into the AFM probe [ Actoprobe APPLICATIONS 5 2015 ] .AAOPS被设计为在召开AFM中使用,以通过包括本申请的索赔优先级和优先级来增强其功能,以上提到的仪器(NSOM,TERS,TERS,混合访问应用程序编号62 / 415,097于2016年10月31日提交,AFM)。 这些独特的光学探针的设计是根据整个披露,通过形式的传统AFM探针和参考。 10添加,同时提供有关纳米级样品的Opti cal特性的信息。 本发明概念的AAOP领域是基于单次结合二极管激光器和AFM探针的基础。 AAOP被设计为本发明与AFM显微镜和空腔探针有关的,即,AFM探针尖端是激光接近 - 场光学显微镜探针的一部分,尤其是15个腔。 AAOP由基于GAA的悬臂组成,其单片AFM活动光学探针能够执行安装在常规SI芯片上的AFM探针。 传统的AFM测量和光学成像,尽管在技术上可行,但纳米级的GAAS / SI杂交和光谱法。 硅,im和GAAS。 (DBR)镜子。62 / 415,097于2016年10月31日提交,AFM)。这些独特的光学探针的设计是根据整个披露,通过形式的传统AFM探针和参考。10添加,同时提供有关纳米级样品的Opti cal特性的信息。本发明概念的AAOP领域是基于单次结合二极管激光器和AFM探针的基础。AAOP被设计为本发明与AFM显微镜和空腔探针有关的,即,AFM探针尖端是激光接近 - 场光学显微镜探针的一部分,尤其是15个腔。AAOP由基于GAA的悬臂组成,其单片AFM活动光学探针能够执行安装在常规SI芯片上的AFM探针。传统的AFM测量和光学成像,尽管在技术上可行,但纳米级的GAAS / SI杂交和光谱法。硅,im和GAAS。(DBR)镜子。提出了严重的问题,可能会影响由于具有不同热膨胀常数的材料的粘结背景而产生的应变,即纳米级的光学表征当前需要NSOM(发明光学显微镜的接近 - 现场扫描摘要),TERS(TIP-增强的Raman Spectros副本)或Hybrid AFM(其中包括专门的FAR -FAR -FAR -FAR -FIEL -FIELD -FIELD 25本发明的对象都提供新型的光学显微镜)。class of probes for atomic force microscopy ( monolithic Attempts at integrating atomic force microscopy and AFM active optical probeML AAOP ) by integrating a optical techniques have already been made and several laser source and a photodetector monolithically into the products based on these schemes have found their way into AFM probe , based entirely on GaAs or similar lasing the market .可商购的,具有Inte-30材料的AFM尖端,从而避免使用有害的GAAS / SI杂化片状波导(空心尖端)。带有外部激光源[Celebrano 2009]。本发明构成了一种制造成本方法的方法,其固有的局限性就整体,集成的光学AFM探针而言。可以传递的最广泛的光学分辨率和光功率。用于原子力显微镜的使用的探针被制造得可实现高侧分辨率使用硅技术的接近磁场35的大小。此方法有限作为光学设备制造的基础。相比之下,ML AAOPS是孔需要减少的,因此导致完全由GAAS制造的指数,半导体材料的光电输出减少。具有最终分辨率和检测器功能的近距离显微镜的激光应用可以通过大约50 nm的外延生长来实现,但不适用于光学结构。边缘 - 发射激光二极管,轻度指南和EFFI光谱,由于功率输出较小。40个满足的光电探测器是通过对旨在更好地整合光区域(Epi-层)的活跃的其他方法来制造的,而AFM尖端是用源和AFM尖端制造的,通常涉及将特殊成长的GAAS外部外在过度层层附加到一个预先制动的光源(Edge Expriced semitter,vcse)的顶部(vcse vcse sepge a veriide a cert a py a veriide a cert a c。 AFM Cantilever探针(混合方法)[Bargiel Epi-激光结构的层。GAAS的选择是2006年,Kingsley 2008]或光源45的制造,直接在AFM尖端上直接在AFM尖端上建立的制造技术的基础[Heisig 2000a,Heisig,Heisig 2000b,nology,nology,允许时间和成本 - 有效的制造 - 有效的制造Hoshino Hoshino Hoshino 2008,Hoshino 2009,Hoshino 2009]。在这些情况下,探针的光学。本发明的实践很容易被探测到探针中。成本 - 有效地使它们负担得起,以实现本发明的说明性体现,即Tific社区。是在AFM尖端制造的激光波长[AN 2008]。杂种扩展到替代III -V半导体,例如INP,方法仅显示在研究实验室和GAP,GAP,GAS和GAN中起作用,以扩大可用的波长,很难想象如何将光学探针从UV到可见的和Mid -Midrared制造50个覆盖率。此外,在激光腔中常用的VCSEL由两种分布式bragg反射器定义,这种方法的光输出功率受到限制。第一个激光镜是标准的第一阶 - 另外,单个集成的光电视也具有dbr光栅(周期 / 2ng,其中h。< / div>光电探测器-55和NEF是仅GAAS波的有效折射率[AN 2008]不能解决指导的困难),该指标可确保将光源对齐在AFM尖端上的激光单个纵向模式,并进行要求。第二激光镜是降低检测器尺寸的第二个订单DBR,以实现位于悬臂末端的空间光栅(周期为n / neft)。IT分辨率直接与将用作用作折叠镜的要求矛盾,该镜子将光线(以获得高60 AVITY激光模式获得的最大可能的检测区域)垂直地进入Nansoscale上光学上的灵敏度水平的AFM尖端中。具有集成的LED光源和Pho-Ridge波导的AFM尖端顶部的特殊生长的GAA外延层层。尖端探头,光源(GAAS LED)被简单地粘在65本身上,是扮演悬臂芯片作用的总内反射棱镜。因此,激光产生的光已证明是todeTector [Sasaki 2000],但是虽然将耦合到GAAS探针的表面模式(锥形光电探测器(锥形光电探测器)中)并转移到尖端顶点。这不足以满足需求 - 输出镜,第三镜,在激光腔中。高功率,单波长操作的精神。GAAS微型 - 棱镜将激光光引导到尖端顶点和