喧闹的城市街道上充斥着老虎的叫声;你走过的脚步声就像一支既不和谐又没有节奏的管弦乐队。夜晚高耸入云的摩天大楼的灯光刺破了漆黑的夜空,将一束奇异的光芒倾泻而下,笼罩着整个大都市。成群的人从摩天大楼的缝隙中穿梭而过,看起来像是孤独的身影站在原本熙熙攘攘的世界的中心。人群挤满了街道,空气中弥漫着浓重的气味,既有废气的味道,也有热气腾腾的食物的味道。然而,尽管噪音震耳欲聋,永无休止,但仍然有一种内在的能量贯穿着这座城市,一种永不停歇的心跳,将它送入黑夜。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
瑞士巴塞尔董事董事会 - 2024年7月17日 - 来自巴塞尔IOB的创新性纺纱Rhygaze自豪地宣布,它已成功筹集了1000万瑞士法郎的种子回合。这一轮由荷兰风险投资公司的生物生物通用风险投资(BGV)和诺华风险基金(NVF)共同领导。Rhygaze Ag正在开创一种使用锥质遗传学的变革性方法,该方法有可能为患有失明的患者彻底改变视力恢复。锥是负责高敏视视觉的视网膜细胞,并且可能在各种疾病中失去对光的敏感性。Rhygaze的基因疗法溶液提供了一种新的光传感器基因,专门针对失去光敏度的锥细胞,修复其检测光的能力。种子资金将用于将基因治疗转变为第三方制造组织,并进行必要的研究以开始人类的临床试验。Rhygaze的名字向莱茵河(或“ Rhy”)的巴塞尔 - 德国单词致敬,他很荣幸能为巴塞尔地区生物技术生态系统做出贡献。IOB联合导演查尔斯·古布斯(Charles Gubser)说:“ IOB很高兴这项技术多年来将有可能吸引盲人患者,我们希望,我们希望恢复他们的愿景。IOB联合导演查尔斯·古布斯(Charles Gubser)说:“ IOB很高兴这项技术多年来将有可能吸引盲人患者,我们希望,我们希望恢复他们的愿景。iob有信心在其经验丰富的投资者的大力支持下,在巴塞尔生态系统中运作,将有最大的成功机会。” BGV总合伙人兼Rhygaze董事会成员Daniela Couto说:“在BGV,我们一直在密切监视新型的光遗传学方法,并评估该领域的众多投资机会。我们对Rhygaze的兴趣是由其创新的作用机理,专门针对锥细胞的,及其在各种遗传背景上治疗盲人患者的潜力。”
数据保护 有关我们如何使用您的个人信息、我们收集和处理的信息类型以及我们处理个人信息的目的的更多信息,请阅读我们的数据保护声明(可在此处查看)。《通用数据保护条例》规定 IOB 有义务保持个人数据的更新。为了帮助我们履行这一义务,您可以随时通过 IOB Learn 上的“会员资源 > 我的详细信息”部分更新您的个人信息(您也可以在此处更新您的营销偏好)。
西班牙巴塞罗那 Quironsalud 集团国际乳腺癌中心(IBCC)(JMPG、LG、JC);西班牙巴塞罗那医学科学创新研究中心(MEDSIR)(JMPG、MVB、SB、ALC、MSC、AM、JC);美国新泽西州里奇伍德医学科学创新研究中心(MEDSIR)(JMPG、MVB、SB、ALC、MSC、AM、JC);葡萄牙里斯本 EPE 医院教授 Doutor Fernando Fonseca (MVB, SB);西班牙马德里 Quiron 集团 Ruber 国际医院 IOB 肿瘤研究所 (PC);西班牙塞维利亚罗西奥圣母大学医院(MRB);西班牙瓦伦西亚大学医院、INCLIVA 生物医学研究所 (JMC);西班牙科尔多瓦大学索菲亚王后医院迈蒙尼德生物医学研究所(JHR);西班牙巴塞罗那大学德克萨斯医院(LG,AMB);西班牙马德里和巴塞罗那 Quiron 集团 IOB 肿瘤研究所(FR);西班牙巴塞罗那德尔玛医院(SS);西班牙瓦伦西亚瓦伦西亚肿瘤研究所基金会(SB);西班牙马德里拉蒙卡哈尔大学医院(MG、MFA);葡萄牙里斯本光明医院 (MN);西班牙瓦伦西亚 FISABIO Arnau de Vilanova 医院(ALC);西班牙瓦伦西亚瓦伦西亚天主教大学(ALC);马德里欧洲大学,马德里,西班牙(JC)
其他培养基类型 对于特定解决方案,可能需要使用替代培养基类型来隔离可能损害系统的利基细菌。以下是针对此类细菌经常要求使用的一些其他培养基类型: • SRB - 改良 Postgate B (MPB) • SRB - 美国石油协会 (API) • 硫代硫酸盐还原菌 (TRB) • 普通厌氧菌 (GAN) • 兼性和专性厌氧菌硫代乙醇酸盐 (TGC) • 硝酸盐还原菌* (NRB) • 硝酸盐还原硫化物氧化菌 (NRSOB) • 亚硝酸盐还原菌* (NiRB) • 亚硝酸盐氧化菌 (NOB) • 铁氧化菌 (IOB) • 石油降解菌 (ODB)
根据 NIAG 对 NMM 的研究 (NIAG SG 284),有两个主要领域需要进一步研究。根据 NMM 在石墨烯、芯片实验室、传感器、可穿戴技术、纳米技术、物联网 (IoT) 和体联网 (IoB) 方面取得的进展,有新的选择可以将数据分发到决策系统,节省能源,降低成本,并提高多域作战环境的数字化程度。“替代电池技术”和“可穿戴技术”这两个领域在军事领域具有很高的应用价值。因此,联盟需要充分利用 NMM 提供的机会,同时也要解决互操作性和兼容性问题、弹性和冗余性。这项 NMM 技术研究是整体努力的一部分,旨在提高联盟塑造多域作战环境的能力,以利于我们发展,并支持数字化转型过程。
摘要。本文提出了一种增强的 Montgomery 和高效的模乘法实现方法。加密过程用于在数据从发送器传输到接收器时提供高信息安全性。各种使用方法,如 RSA、ECC、数字签名算法。提出的 Montgomery 算法使用加密的 RSA 算法,在两个不同的输入中实现,两个输入都是 8 位输入。编码已用 Verilog 语言完成,结果在 Vivado 软件上进行了模拟。对于物理测试,我们使用了 Digilent 公司生产的 FPGA NESYS 4 DDR 硬件板,上面有 Artix-7 FPGA 芯片。所提出的方法在切片触发器数量、LUT、IOB 数量和功耗方面显示出良好的效果。与其他以前的方法相比,所提出的方法在不同结果参数方面显示出更好的效果。
巴塞尔(IOB)的分子与临床眼科研究所,巴塞尔4031,瑞士B瑞士B眼科系巴塞尔大学,巴塞尔大学,巴塞尔大学4031,瑞士c瑞士科医学系,Inselspital,Inselspital,Inselspital,Inselspital,伯恩大学,伯尔尼大学,伯恩3010号,伯恩大学,伯尔尼大学,伯恩斯兰大学,伯恩斯兰大学。 (IOGP), Lisbon 1169-019, Portugal and Inova4Health, Nova Medical School, Faculty of Medical Sciences, NMS, FCM, New University of Lisbon, Lisbon 1169-056, Portugal F Department of Genetics and Genome Biology, University of Leicester, LeiSter Le1 7RH, UK G Department of Computational Biology, University of Lausanne, Lausanne 1015,瑞士H医学遗传学系,圣玛丽亚医院,里斯本北大学医院中心(Chull),里斯本1649-035,葡萄牙I基本免疫学实验室,里斯本大学医学院,利斯本大学,里斯本大学1649-028,葡萄牙 *,葡萄牙 *应贡献:Carlo.r.r vorla:Carlo.r.r.r.r.r.r.r.r.r.r.r.r.r v。 编辑者:Amalio Telent巴塞尔(IOB)的分子与临床眼科研究所,巴塞尔4031,瑞士B瑞士B眼科系巴塞尔大学,巴塞尔大学,巴塞尔大学4031,瑞士c瑞士科医学系,Inselspital,Inselspital,Inselspital,Inselspital,伯恩大学,伯尔尼大学,伯恩3010号,伯恩大学,伯尔尼大学,伯恩斯兰大学,伯恩斯兰大学。 (IOGP), Lisbon 1169-019, Portugal and Inova4Health, Nova Medical School, Faculty of Medical Sciences, NMS, FCM, New University of Lisbon, Lisbon 1169-056, Portugal F Department of Genetics and Genome Biology, University of Leicester, LeiSter Le1 7RH, UK G Department of Computational Biology, University of Lausanne, Lausanne 1015,瑞士H医学遗传学系,圣玛丽亚医院,里斯本北大学医院中心(Chull),里斯本1649-035,葡萄牙I基本免疫学实验室,里斯本大学医学院,利斯本大学,里斯本大学1649-028,葡萄牙 *,葡萄牙 *应贡献:Carlo.r.r vorla:Carlo.r.r.r.r.r.r.r.r.r.r.r.r.r v。编辑者:Amalio Telent
微生物腐蚀 (MIC) 是各个行业面临的严峻挑战,包括石油和天然气工业、海洋基础设施和水处理厂,因为微生物活动会显著加速金属降解。 MIC 是由细菌、古细菌和真菌在金属上形成生物膜引起的,它们会引发局部电化学反应,从而导致腐蚀。本文重点关注硫酸盐还原菌(SRB)、铁氧化细菌(IOB)、产甲烷菌等关键微生物,以及支持微生物生长和加速腐蚀的环境因素,包括氧气、营养物、pH值、温度和盐度。此外,还评估了各种 MIC 检测方法,例如微生物分析、电化学阻抗谱 (EIS)、无损检测和实时传感器。缓解策略包括耐腐蚀材料、抗菌涂层、杀菌剂和阴极保护,重点关注提供可持续解决方案的新兴技术,例如智能(自修复)涂层、纳米材料和生物电化学系统。对于更具成本效益和效率的智能涂层的开发、纳米材料的长期环境影响以及生物电化学系统在各种条件下的有效性的优化,还必须进行进一步的研究。通过整合检测和缓解方法,工业界可以保护关键基础设施免受微生物腐蚀的长期影响,并显著降低微生物腐蚀损害的成本。关键词:硫酸盐还原菌(SRB);生物科学;微生物腐蚀(MIC);减轻腐蚀;电化学阻抗谱 (EIS) 摘要 微生物影响腐蚀 (MIC) 对石油和天然气行业、海洋基础设施和水处理设施等各个行业构成了重大挑战,因为微生物活动会显著加速金属降解。 MIC 是由细菌、古细菌和真菌引起的,它们在金属表面形成生物膜,引发局部电化学反应,从而导致腐蚀。本文重点关注硫酸盐还原菌(SRB)、铁氧化细菌(IOB)、产甲烷菌等关键微生物,以及支持微生物生长和加剧腐蚀的环境因素,包括氧气、营养物、pH值、温度和盐度。此外,还评估了各种 MIC 检测方法,包括微生物分析、电化学阻抗谱 (EIS)、无损检测和实时传感器。缓解策略包括耐腐蚀材料、抗菌涂层、杀菌剂和阴极保护,重点关注自修复涂层、纳米材料和生物电化学系统等提供可持续解决方案的新兴技术。进一步的研究对于开发更具成本效益和效率的自修复涂层、了解纳米材料的长期环境影响以及优化生物电化学系统以在不同条件下发挥作用至关重要。通过整合检测和缓解方法,行业可以保护关键基础设施免受 MIC 的长期影响,并显著降低与 MIC 相关故障相关的成本。