高级项目学生 2020-21 年期间,生物系的 11 名教员将为高级项目学生提供指导。他们是:Casey Bradshaw-Wilson 博士、Lauren French 博士、Brad Hersh 博士、Tricia Humphreys 博士、Mahita Kadmiel 博士、Ron Mumme 博士、Margaret Nelson 博士、Lauren Rudolph 博士、Yee Mon Thu 博士、Matthew Venesky 博士和 Lisa Whitenack 博士。他们实验室提供的研究机会以及他们的高级项目学生通常从事的研究活动类型如下。(Catharina Coenen 博士和 Becky Dawson 博士将不会在 2020-21 年期间为高级研究生提供指导。) ___________________________________________________________________________________________ CASEY BRADSHAW-WILSON 我的研究兴趣主要在淡水生态学和爬虫学,但我也与学生一起合作过更一般的生态学项目(水生生物之外)。 我还对研究栖息地丧失、破碎化和改变对蝾螈运动模式和数量的影响感兴趣。我个人的研究是调查入侵鱼类物种(圆虾虎鱼)对当地动物群(水生大型无脊椎动物、鱼类、两栖动物和贻贝)的影响。综合项目通常包括秋季的实地研究和冬季的后续实验室实验和数据分析。鉴于我在野生动物和渔业方面的背景,综合学生可以在生态研究领域有广泛的主题。 ___________________________________________________________________________________________ 劳伦·弗伦奇 我的研究兴趣属于细胞和分子神经科学的总标题。我感兴趣的是探索是什么让单个神经元彼此独特,它们如何“交谈”以在神经系统中传递信息,以及药物和毒素如何影响它们的功能。我实验室的项目涉及神经生理学和分子生物学技术。药理学对神经系统的研究至关重要;了解离子通道等蛋白质如何促进正常功能,并发现病理状况背后的机制。其中一个项目涉及一种狩猎蜗牛,其毒液非常复杂且有效,仅作用于猎物的神经系统。许多蜗牛毒液化合物既可用于医学,也可用于基础研究。我的目标是找到针对某些特定钙和钾离子通道的药剂,以进一步了解这些蛋白质在神经系统中的作用。另一个项目涉及一种称为 BK 通道的离子通道及其在阿尔茨海默病病理学中的可能作用。研究表明,这种通道的活动受到一种称为淀粉样蛋白β的蛋白质的抑制。我感兴趣的是描述这种相互作用并发现肽如何影响通道行为。另一项研究涉及将小龙虾作为研究成年神经发生的模型生物。我们过去认为神经系统只能在发育过程中产生新的神经细胞,但现在我们知道神经发生在动物的一生中都在大脑的某些区域进行。我对研究这一过程背后的机制以及如何促进或抑制这一过程很感兴趣。 ___________________________________________________________________________________________
1.1 U NDERSTANDING B IOLOGY AT THE S YSTEMS LEVEL ...................................... 4 1.2 W HAT DOES ONE REQUIRE FOR A SYSTEMS LEVEL UNDERSTANDING ?.................................................................
Our curriculum has been des ign ed in su ch a way that the students go through the academic jou rney with in-depth learning of not only core cou rse s in Biotechn ology and Computa tional B iology but also explora tions in entrep reneurship, h umanities & social sc iences, computation , electroni cs applicat ion, foreign la nguag e, phy si cal and chemical sc iences so that they竞争是否竞争解决任何问题或发展有关医疗保健,营养和环境问题的技术解决方案。继续考虑在领域特异性生物技术和计算生物学中接受培训的专业人员的全球需求,我们通过选修课和专业化创造了灵活的课程路径。此外,我们所有的学生都将有机会通过强制实习计划体验沉浸在工业环境中的沉浸式,没有其他地方比海得拉巴更好 - 亚洲生命科学的枢纽。
b Achelor b o o ology o genology the General Biology选项强调生物学培训的广度。作为导致生物学科学学位的选择中最灵活的,学生通过从多个不同部门提供的广泛选修课中选择了学位的意见。每种选择都得到了艺术与科学学院的一般教育要求,例如英语作文,写作,外语,QSR,VLPA和I&S。生物学部门的入学要求此竞争性入学过程不是限制对专业的访问权,而是为了帮助学生仔细计划和准备生物学专业的成功。可以在生物学网站上找到电子应用程序,并将在晚上11:59的秋天,冬季,春季和夏季季度的第二个星期五。要申请生物学专业,您必须满足以下最低申请要求:
B.Sc的程序组件物理(单轨)2017 ..................................................................................................书签未定义。B.Sc的程序组件物理学(主要物理)2017……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………物理学(单轨)2017………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………in Physics (Major Physics) 2017… ................................................................................ 8 M AJOR E LECTIVE C OURSES ........................................................................................................ 11 G ENERAL S TUDIES ELECTIVE C OURSES L IST ...................................................................................... 13 C OURSE D ESCRIPTION ............................................................................................................... 14 M INOR IN A STRONOMY FOR P HYSICS M AJOR ................................................................................. 19 M INOR IN B IOLOGY FOR P HYSICS M AJOR ...................................................................................... 20 M INOR IN C HEMISTRY FOR P HYSICS M AJOR ................................................................................... 21 M INOR IN C OMPUTER S CIENCE FOR P HYSICS M AJOR ........................................................................ 23 M INOR IN M ATHEMATICS FOR P HYSICS M AJOR ............................................................................... 24 M INOR IN S TATISTICS FOR P HYSICS M AJOR .................................................................................... 26 M AJOR S UPPORT R EQUIREMENTS C OURSES D ESCRIPTIONS ................................................................ 27 U NIVERSITY R EQUIREMENTS C OURSES D ESCRIPTIONS ....................................................................... 28 C OLLEGE R EQUIREMENT C OURSES D ESCRIPTIONS ................................................................................................................................................ 29
了解人类心脏的范围内变异性对于检测异常和改善心脏解剖结构和功能的评估至关重要。尽管已经开发出许多构造建模方法来分别捕获心脏解剖学或物理学的可变性,但它们的复杂互连很少被一起进行。在这项工作中,我们提出了一种新型的多模式变异自动编码器(VAE),能够以心电图(ECG)和3D双脑室云的形式处理结构生理学和比较时间的解剖信息。我们的方法在英国生物库数据集上达到了高重建精度,其在基础图像下方的预先介绍和输入解剖学之间的倒角距离和ECG重建超过了一种专门用于ECG生成的ART基准方法。我们还评估了其生成能力,并根据共同的临床指标和最大的平均差异来评估生成和黄金标准解剖学,ECG和联合解剖学ECG数据的可比人群。
摘要神经丝(NFS)是多基因的,神经元特异性的中间细丝,该细丝由直径10 nm的细丝“核心”组成,周围是一层长的内在无序蛋白(IDP)“尾巴”。 NF被认为可以调节发育过程中的轴突能力,然后稳定成熟的轴突,而NF亚基的不利性,突变和Ag gregation在多种神经系统疾病中显着。该领域对NF结构,力学和功能的理解已被多种生物化学,细胞生物学和小鼠遗传研究深入了解了四十年以上。这些研究为我们对轴突生理学和疾病中NF功能的集体理解做出了很大的贡献。近年来,在两个新的情况下,人们对NF亚基蛋白引起了人们的兴趣:作为神经元损伤的潜在血液和脑脊液的生物标记,以及具有吸引人特性的模型IDP。在这里,我们回顾了NF结构和功能方面的既定原则和最新发现。在Pos sible的地方,我们将这些发现放在NF组装,相互作用和对轴突力学的贡献的背景下。
简介现代医学面临的重要挑战是,新药、生物制剂甚至疫苗可能能够精确改变特定靶标的功能,但仍然具有脱靶效应,从而阻碍其治疗发展。当冲突涉及在心脏生理中发挥关键作用但同时促进癌症发展的蛋白质时,护理人员和患者都会面临挑战。一个很好的例子是,正在开发用于治疗心力衰竭 (HF) 的 Bcl2 相关的自噬基因-3 (BAG3) 激动剂和用于治疗癌症的 BAG3 抑制剂。癌细胞因代谢功能障碍、异常的 RNA 剪接、加速的蛋白质合成、代谢重编程以及错误折叠的蛋白质和其他细胞碎片的积累而受到高度压力。为了生存,癌细胞已经发展出增强蛋白酶体和自噬途径活性同时阻断细胞凋亡 (1) 的能力。因此,消除机体恶性肿瘤的合理策略是抑制蛋白质质量控制 (PQC) 并激活靶向凋亡 (2)。根据这一策略,癌细胞中积累的细胞碎片将被 BAG3 反应性促生存信号通路清除:自噬、线粒体自噬和泛素相关蛋白酶体通路 (3, 4)。不幸的是,开发 BAG3 靶向抗癌疗法的努力
抽象的长期非编码RNA(LNCRNA)成为心脏物理学和疾病的关键调节因子,尽管揭示其作用方式的研究仍然仅限于很少的例子。我们最近确定了PCHARME,这是一种与染色质相关的LNCRNA,其在小鼠中的功能敲除导致心脏肌肉的肌生成和形态重塑。在这里,我们结合了基因表达(CAGE),单细胞(SC)RNA测序和整个原位杂交分析的帽盖 - 分析,以研究PCHARME心脏的表达。自心肌生成的早期步骤以来,我们发现lncRNA专门局限于心肌细胞,在那里它有助于形成含有MATR3的特定核冷凝物,以及心脏发育的重要RNA。与这些活性的功能性意义一致,小鼠的PCHARME消融导致心脏囊肿的成熟延迟,这最终导致心室心肌的形态改变。由于心肌的先天异常在人类上与临床相关,并且患者倾向于重大并发症,因此控制心脏形态的新基因的鉴定变得至关重要。我们的研究为促进心肌细胞成熟的新型LNCRNA介导的调节机制提供了独特的见解,并与Charme基因座有关未来的疗法应用。
物理特性与人类表皮相似的有机电子设备正在开发中。[1–4] 此类设备能够与皮肤表面的复杂特征进行非侵入式耦合,用于后续的传感任务。除了为人类开发的系统和相关诊断设备外,分析活植物产生的电信号的方法也引起了从生物学到工程学等领域越来越多的关注。[5–10] 植物通过电信号对不同刺激作出反应,例如触摸、光、伤口或其他压力源(如干燥)。[6] 植物中快速的长距离电通信与较慢的生化信号传导的比较是植物生物学和农业领域的一个重要的研究课题。 [6,11–16] 植物中的电信号在细胞和离子水平上源自与人类和动物神经细胞中不同的机制(动物神经细胞中的去极化是由钠离子的跨膜内流增加驱动的,植物电信号,即动作电位,涉及钙的内流和/或氯离子的外流)。 [17] 有必要进一步了解植物电信号并将其与生理联系起来,因为它可以成为一种工具,例如,用于更好地控制生长,以及通过施肥或施用农药以及光照/水管理来响应植物需求的系统。此外,还有一个不同的领域,试图利用植物的内在功能,如传感、通信、