基因治疗是一种医疗技术,可通过补充缺失基因、沉默过度表达的基因或编辑基因组来治疗遗传疾病的起源。病毒载体通常用于将 DNA 有效载荷递送至细胞,其中重组腺相关病毒 (rAAV) 载体是治疗应用的旗舰载体。有效载荷可以是用于治疗遗传疾病的治疗基因或用于癌症免疫基因治疗的免疫刺激基因。重要的是,有许多 rAAV 衣壳变体可用于此类应用,并可确定载体与靶细胞的相互作用。
在本章中探讨了形状记忆聚合物(SMP)及其潜在应用的多功能性,特别着眼于它们在生物医学领域中的有前途的作用。SMP以其在特定刺激下经历形状变化的能力而闻名,由于它们在创建高级软机器人,促进可重复的驱动并启用多功能医疗设备方面的潜力而受到了吸引力。在生物医学领域中,SMP引起了重大兴趣,在不同地区找到了应用,例如可自使部支架,药物输送系统,自晶缝线,组织工程脚手架等。这些材料提供了微创使用,生物降解性,结构支持和受控治疗剂释放的优点。尽管这些发展有很大的希望,但本章强调了评估生物相容性,降解率和功能持续时间以进行安全实施的重要性。在一个前瞻性笔记上,本章强调了SMP在最小的侵入性程序中所扮演的重要作用及其在塑造生物医学应用未来的持续发展。
医疗设备产生电能通过从周围环境提取能量来发电。通常情况下,授精医疗设备采用外部供电,即使用外部电线,但这种方法的缺点是会导致皮肤感染、不适和其他对患者有害的隐患。因此,电线的下一个替代方案是电池,它为授精医疗设备供电。但电池存在一些缺点,如寿命有限、功耗和化学危害。因此,研究人员仔细分析了这些问题的解决方法,并提出了替代能源作为解决所有这些问题的良好解决方案。因此,替代能源的寿命更长,对患者来说非常安全。捕获替代能源的最佳技术是使用无线传感器,它可以捕获周围环境中的能量。
Sang Sun Yoon微生物学教授,Yonsei大学医学院兼首席执行官Biome Inc BM107,一种新颖的丁酸酯产生的丁酸酯合成生物系统,我们已经开创了创新的系统,以避免由于其在小小的果实中提供有效的果实,从而使丁酸酯用于治疗目的的丁酸酯挑战。利用食品级细菌菌株,我们的系统通过通过酶促转化率转化其前体,直接在结肠中直接产生丁酸酯。动物的临床前研究强有力地证实了丁酸酯的产生及其随后的抗炎益处。我们预计我们的突破将显着推动各种疾病的丁酸酯的治疗性递送。将提出详细的结果和潜在影响。
产品描述Zymobiomics®微生物群落DNA标准II(对数分布)是八个细菌和两种真菌菌株的基因组DNA的混合物。微生物标准是准确表征的,并且包含可忽略的杂质(<0.01%)。它是通过从十种微生物菌株的纯培养物中提取的汇总DNA构建的。在合并之前对每个纯培养物的DNA进行了量化。混合后,使用基于NGS的测序确认微生物组成(图1)。该微生物标准可用于评估微生物工作流程的性能,也可以用作常规QC目的的阳性对照。DNA样品混合以创建对数分布的丰度(表1),这使用户可以轻松评估微生物学工作流的检测极限。1 µL标准(11 ng DNA)可用于评估标准中包含的金黄色葡萄球菌的丰度,该检测极限为0.000089%,相对丰度为0.000089%,或相当于3个细胞的DNA量。如果需要,标准也可以与人类基因组DNA相混合,例如人类HCT116 DKO DNA(#D5014-1),以模仿人类微生物组样本。可以在表2中找到有关十种微生物菌株(包括物种名称,基因组大小,平均GC含量,16S/18S拷贝数,系统发育)的详细信息。从下面的链接中获得了这些菌株的16S&18S rRNA序列(FASTA格式)和基因组(FASTA格式)。如果您需要帮助分析从此标准2生成的测序数据,请随时与我们联系。参考基因组下载:https://zymo-files.s3.amazonaws.com/biopool/zymobiomics.std.refseq.v3.zip关于微生物组标准需求的背景:微生物组成概要配置文件在下一代测序中启动了由Microbobiomics和Metegenomics研究的常规测序,并成为了MetageNomics的常规研究。众所周知,这些分析技术在工作流程的每个步骤中都会遭受偏差和错误,包括DNA提取,图书馆制备,测序和生物信息学分析。要评估不同微生物学工作流的性能,该领域迫切需要可靠的参考材料,例如具有定义成分的模拟微生物社区。1个基因组DNA;该DNA标准不是独立于Zymobiomics®微生物社区标准II(#D6310)的直接衍生物和制造。2我们可以使用内部管道来帮助评估该标准的测序数据中的偏差程度。
产品描述Zymobiomics®微生物群落DNA标准是从八个细菌和两种真菌菌株的纯培养物中分离出的基因组DNA的混合物。在混合1之前将来自每个纯培养的基因组DNA分离和定量。含有基因组的GC含量2覆盖范围从15%到85%。微生物标准是准确表征的,并包含可忽略的杂质(<0.01%)。这使其可以用于暴露微生物学或宏基因组工作流中的人工制品,错误和偏见。该产品是评估与图书馆准备,测序和生物信息学分析相关的偏见和错误的理想选择。它非常用作基准微生物学或元基因组学分析的性能或作为LAB间研究的质量控制工具的微生物标准。此标准也是帮助用户构建和优化工作流程的理想选择,例如评估PCR嵌合体速率(图1),并在16S rRNA基因靶向测序中删除假阳性(图2),并评估shot弹枪元基因组测序的测序覆盖范围中的GC偏置(图3)。可以在表2中找到有关十种微生物菌株(包括物种名称,基因组大小,平均GC含量,16S/18S拷贝数,系统发育)的详细信息。这些菌株3的16S/18S rRNA序列(FASTA格式)和基因组(FASTA格式)可从下面的链接中获得。,如果我们可以帮助分析此标准生成的测序数据,请随时与我们联系。参考基因组下载:https://zymo-files.s3.amazonaws.com/biopool/zymobiomics.std.refseq.v3.zip。
疫苗生产课程提供与疫苗生产有关的各个方面的全面能力建设和技能转移,包括深入研究包括真菌、酵母、细菌、哺乳动物和植物系统等各种表达平台的生产和扩大规模所面临的挑战和解决方案。
正如美国国家科学、工程和医学院(National Academies)在 2023 年的一份报告中指出的那样,将科学、技术和创新生态系统与公平、正义、公正和共同利益等道德概念相一致并不总是优先事项。5 研究新兴技术对特定人口群体的影响是确保技术创新公平分配潜在利益和负担的重要一步。具体而言,就面部识别(最常用的生物特征识别技术之一)而言,美国国家科学院 2024 年 1 月的一份报告发现,面部识别引发了重大的公平、隐私和公民自由问题,值得开发、部署和评估该技术的组织关注。6
