使用高剪切模量的固体电解质被认为是抑制锂枝晶形成并同时保证电池高安全性的最有前途的方法。[9] 尽管在提高固体电解质的高离子电导率方面取得了重大进展,但固态电池在实际工业条件下,特别是高功率系统下的运行尚未实现。[10] 一旦施加的电流密度超过某个值(该值被定义为临界电流密度),锂丝(或锂枝晶)通过固体电解质的扩展将引发电池故障。[11] 当锂丝连接阳极和阴极时,锂丝的生长会导致界面物理接触失败、固体电解质机械性能下降,甚至导致电池短路。 [12] 各种固体电解质均已报道了此类失效过程,包括石榴石 Li 7 La 3 Zr 2 O 12 (LLZO)、[13] 非晶态 70Li 2 S-30P 2 S 5 玻璃、[14] 银锗矿 (Li 6 PS 5 Cl) [15] 和钠超离子导体类型(NASICON,例如 Li 1 + x Al x Ge 2 − x (PO 4 ) 3 )。[16]
全身结缔组织疾病(CTD)包括大量自身免疫性疾病,其特征是多个系统和器官的参与。在CTD过程中,可能发展出肺动脉疾病的肺病因(pH),包括肺动脉高压(PAH),继发于肺部疾病的pH值,左心脏病的后毛细血管后pH和慢性递增的thromonboo胚胎 - 胚胎 - 胚胎 - 胚胎 - 胚胎 - 胚胎肺高血压(CTEPH)。此外,pH的不同形式可能会彼此共存。在患有CTD的患者中,PAH最常发生在系统性硬化症患者中,其中大约影响了约8%–12%的患者。未经治疗的PAH患者的预后非常差。识别高风险的CTD-PAH人群并进行有效,准确的诊断,以便引入有针对性的治疗,这一点尤其重要。超声心动图用于筛选pH值,但是临床和超声心动图怀疑pH总是需要通过右心导管插入来确认。对PAH的确认可以在这组患者中启动生命的药理学治疗,应在推荐中心进行管理。可用于药理学的药物包括内皮素受体拮抗剂,磷酸二酯酶5抑制剂和前列环素。
在胚胎发育过程中,细胞将分化为高度专业的细胞类型。利用单细胞RNA测序,已经投入了大量资源,以通过其跨性别的pro文件来分类这些差异化的细胞类型。尽管为涉及杂货器官及其细胞组成而做出了广泛的努力,但我们缺乏评估测序项目完整性的指标。在这种细胞生物多样性分析中,我们利用了日益获得的单细胞数据以及统计方法,原始开发了用于评估生态群落的物种丰富性,以估计基于单细胞填充技术的数据的任何ORGAN的细胞多样性。从这种细胞丰富度估计中,我们建立了一个统计框架,可以评估任何大型单细胞专业填充项目的完整框架,此后,其他的测序工作不再揭示出对器官细胞组成的新信息。这种估计值可以作为正在进行的单细胞测序项目的停止点,因此指导对各种人体组织的pro填充的成本更明确。
摘要癌症负责世界上所有死亡原因的12%以上,年死亡率超过700万。在这种情况下,黑色素瘤是在早期发现和治疗中最具侵略性的局限性的。在这个方向上,我们在体内开发,表征和测试了一种基于磁性核心二氧化硅纳米颗粒的新药物输送系统,该系统已掺有dacarbazine并用99 m标记,以纳米模仿剂(nanoradiopharmaceatial and dyanoradiopharmaceatial)(纳米型诊断)和鉴别诊断型和差异型摄像机和墨兰氏症将其用作纳米成像剂和墨兰氏症。结果表明,磁核氧化二氧化硅具有有效的(> 98%),掺有dacarbazine,并有效地用99mtc(Technetium 99 M)(> 99%)标记了。使用带有黑色素瘤的感应小鼠的体内测试证明了磁性核心氧化二氧化硅纳米颗粒的EPR效应,掺有dacarbazine,并在肿瘤内注射technetium 99,并且可能被用作系统注射。在这两种情况下,磁性核心二氧化硅纳米颗粒都掺有dacarbazine并用technetium 99的标记标记,这表明是黑色素瘤的可靠,有效的纳米成像剂。
摘要:在现有文献中,行人动力学模型成功捕获了诸如车道形成,疏散,瓶颈,人群相交等各种复杂场景。然而,由于过程中缺乏人类智能,许多模型,尤其是基于力量的模型,都难以复制简单而真实的情景。在这项研究中,我们提出了一种新颖的可变目标方法(VGA),该方法将人类智能纳入行人dynamics模型中,从而大大提高了他们的效率和现实主义。VGA介绍了多个中间目标的概念,称为可变目标,这些目标指导行人到他们的最终目的地,同时最大程度地减少互动和破坏。这些可变目标充当指导系统,允许过渡和自适应导航。通过战略性地定位可变目标,VGA引入了一个随机性。这使模型可以在相同条件下模拟各种行人路径,以反映人类决策的多样性。除了在简单方案中的有效性外,VGA还展示了复制高密度方案(例如车道形成)的强劲性能,提供了与现实世界中数据匹配的结果。
随着手机摄像头的质量开始在现代智能手机中发挥关键作用,人们越来越关注用于改善手机照片各个感知方面的 ISP 算法。在这次移动 AI 挑战赛中,目标是开发一个基于深度学习的端到端图像信号处理 (ISP) 管道,该管道可以取代传统的手工制作的 ISP,并在智能手机 NPU 上实现近乎实时的性能。为此,参赛者获得了一个新颖的学习到的 ISP 数据集,其中包含使用索尼 IMX586 Quad Bayer 移动传感器和专业的 102 兆像素中画幅相机拍摄的 RAW-RGB 图像对。所有模型的运行时间都在联发科 Dimensity 1000+ 平台上进行评估,该平台配备专用的 AI 处理单元,能够加速浮点和量化神经网络。所提出的解决方案与上述 NPU 完全兼容,能够在 60-100 毫秒内处理全高清照片,同时实现高保真效果。本文提供了本次挑战赛中开发的所有模型的详细描述。
引言基因组编辑工具为生物科学提供了巨大优势[1,2]。现已开发出各种技术,包括锌指内切酶 (ZFN)、转录激活物样效应核酸酶 (TALEN) 和成簇的规律间隔短回文重复序列/CRISPR 相关核酸酶 (CRISPR/Cas) 系统,以提供高效的基因编辑,从而治疗癌症以及传染性和遗传性疾病[3,4]。此外,基因组编辑工具为癌症的基础研究和诊断提供了新的机会,包括设计简单、操作快速、成本低和强大的可扩展性等广泛优势,CRISPR/Cas 是一种快速发展的编辑方法,适用于几乎所有基因组目标[5-7]。从历史上看,“CRISPR”一词由 Mojica 和 Ruud Jansen (2001) 提出[8];Ishino 等人首次在大肠杆菌中发现此类回文重复序列。 (1987)[ 9 ]。这些序列的功能直到 2005 年才明了。Mojica 等人(2005 年)首次指出 CRISPR 在细菌免疫系统中发挥重要作用 [ 10 ]。分子报告
胆汁淤积性肝病的特征是肝脏中过多的胆汁酸积聚。内皮细胞(ECS)在正常条件和肝损伤中塑造了局部微环境,但它们在胆汁淤积中的作用尚不清楚。通过对肝损伤的鼠模型的单细胞RNA测序数据进行比较分析,我们在阻塞性胆汁淤积过程中确定了胆汁导管结扎(BDL)引起的阻塞性胆汁淤积过程中EC中的独特MYC激活。MYC在ECS中的过表达显着上调P-选择素,增加了内部纤维化的效果并加剧了胆固性肝损伤。此过程通过FXR发生,由Chenexyoxycholic Acid(CDCA)及其征服TCDCA激活。用PSI-697抑制P-选择素会减少中性粒细胞的招募并减轻损伤。 胆汁淤积患者的肝样品在EC中还显示出MYC和P-选择素的升高,中性粒细胞增加。 通过MYC驱动的程序将EC识别为胆汁淤积性肝损伤的关键驱动因素,并建议针对CDCA/FXR/MYC/P--链蛋白轴的靶向可能提供治疗方法。用PSI-697抑制P-选择素会减少中性粒细胞的招募并减轻损伤。胆汁淤积患者的肝样品在EC中还显示出MYC和P-选择素的升高,中性粒细胞增加。通过MYC驱动的程序将EC识别为胆汁淤积性肝损伤的关键驱动因素,并建议针对CDCA/FXR/MYC/P--链蛋白轴的靶向可能提供治疗方法。
DNA修复因子通过时空的隔离和DNA双链断裂(DSB)的溶解作用。最近的进步表明,某些DSB修复因子经历了液 - 液相分离(LLP),并显示出类似液滴的特性以及动态材料交换。重要的是,LLP调节了各种生物学过程,异常LLP参与了农业疾病的病理发展。此外,DSB修复过程中DNA修复因子的动态冷凝和溶解的表型呈现了LLP的特性。显着,RNA,聚(ADP-核糖)[PAR]和转录后修饰(PTM),例如磷酸化,泛素化和甲基化,被认为有助于DSB修复因子的LLP。从DSB期间LLP的功能的观点中,DNA修复因子可能会在DSB传感和DNA损伤修复信号转导中作用,参与同源推荐(HR)(HR)和非同源性端始终连接(NHEJ) - 介导的DSB介导的DSB修复,并调节下游径流的途径。基于这些发现,研究人员专注于
背景 爱荷华州依赖从其他州进口煤炭来发电。燃煤发电量已从 2015 年爱荷华州电力结构的近一半(46%)下降到 2021 年的约三分之一。这一转变与风力发电的快速采用相吻合,风力发电在 2019 年首次超过煤炭对发电结构的贡献,并占 2021 年爱荷华州净发电量的 55% 以上。爱荷华州是第一个采用可再生能源标准的州,其《替代能源生产法》于 1983 年为该州的两家投资者所有的公用事业公司 (IOU) 设定了 105 兆瓦 (MW) 的目标。鹰眼州在风能、太阳能和储能发电量占比方面在全国排名第一。爱荷华州也是美国最大的乙醇和生物柴油生产州。2022 年,太阳能产业协会 (SEIA) 将该州在装机容量(510 兆瓦)方面排名全美第 32 位,在未来五年预计增长(1,182 兆瓦)方面排名第 26 位。2022 年美国能源和就业报告发现,爱荷华州有 83,599 名能源工人(占该州总就业人数的 5.6%),其中包括 18,864 名从事能源效率工作的工人。2021 年,爱荷华州在清洁能源就业岗位方面在全美排名第 30 位,有 28,953 名爱荷华人受雇于该行业。 1 爱荷华州能源计划是通过全州利益相关者程序制定的,于 2016 年 12 月发布,并于 2017 年开始实施。该计划围绕四大核心支柱,概述了 15 个目标和 45 项战略,旨在解决经济发展、能源效率和节约、能源资源以及交通和基础设施问题。爱荷华州能源办公室管理与该计划一致的项目,包括研究和开发、劳动力发展、对农村和服务不足地区的支持、生物质转化、天然气扩建、电网现代化和替代燃料汽车。爱荷华州公用事业委员会 (IUB) 监管该州的两个 IOU,对市政公用事业和电力合作社拥有有限的权力。州长任命两党委员会的三名成员。目前,IUB 有两名共和党成员和一名民主党主席。共和党多数派控制着州议会的两院,共和党州长金·雷诺兹于 2017 年 5 月就职。政策优势和机遇美国国家可再生能源实验室 (NREL) 提出了“政策叠加”2 的概念,这是政策制定者需要考虑的重要框架。政策叠加背后的基本思想是,政策之间存在相互依赖性