Bizheva Kostadinka滑铁卢大学加拿大金发女郎沃尔特大学 /克兰,法国南希·拜科夫·亚历山大·亚历山大·芬兰·芬兰·菲兰·奇基什夫·安德烈·M.V。 莫斯科莫斯科莫斯科州立大学,俄罗斯俄罗斯康德·奥尔加·奥尔加大学西班牙西班牙Darvin Maxim Fraunhofer光子微系统IPMS IPMS,Cottbus dermany Dunaev Andrey dunaev Andrey Orel州立大学俄罗斯俄罗斯大学Koenig Karsten Saarland University德国拉林·基里尔(主席)美国休斯敦大学拉里纳·艾琳娜·贝勒医学院,美国休斯敦,美国休斯敦 Lomonosov莫斯科州立大学,莫斯科俄罗斯俄罗斯梅格林斯基阿斯顿大学英国英国诺维科娃novikova tatiana ecole ecole ecole polytechnique / lpicm,法国帕拉西奥,帕拉西奥尔·奥利维拉·路易斯·路易斯·波尔图 - 波尔图 - 工程学院(ISEP)工程学(ISEP)Portug apopov alexey finland Finland Finland Finland,Finland,Finand Priezzhev Alexander M.V. 莫斯科莫斯科洛莫诺索夫州立大学俄罗斯鲁克安吉利卡·乌尔姆大学德国施内克登堡Bizheva Kostadinka滑铁卢大学加拿大金发女郎沃尔特大学 /克兰,法国南希·拜科夫·亚历山大·亚历山大·芬兰·芬兰·菲兰·奇基什夫·安德烈·M.V。莫斯科莫斯科莫斯科州立大学,俄罗斯俄罗斯康德·奥尔加·奥尔加大学西班牙西班牙Darvin Maxim Fraunhofer光子微系统IPMS IPMS,Cottbus dermany Dunaev Andrey dunaev Andrey Orel州立大学俄罗斯俄罗斯大学Koenig Karsten Saarland University德国拉林·基里尔(主席)美国休斯敦大学拉里纳·艾琳娜·贝勒医学院,美国休斯敦,美国休斯敦Lomonosov莫斯科州立大学,莫斯科俄罗斯俄罗斯梅格林斯基阿斯顿大学英国英国诺维科娃novikova tatiana ecole ecole ecole polytechnique / lpicm,法国帕拉西奥,帕拉西奥尔·奥利维拉·路易斯·路易斯·波尔图 - 波尔图 - 工程学院(ISEP)工程学(ISEP)Portug apopov alexey finland Finland Finland Finland,Finland,Finand Priezzhev Alexander M.V.莫斯科莫斯科洛莫诺索夫州立大学俄罗斯鲁克安吉利卡·乌尔姆大学德国施内克登堡
随着我们的电网中分散的可再生能源,对稳定波动的储能系统的需求正在迅速增长。我们的产品组合包括用于储能系统的多种产品:从用于住宅/工业系统的中小型功率模块到用于公用事业规模系统的高功率组件,这些产品可提供最高的可靠性。我们提供各种半导体封装技术,以满足 ESS 行业的使用寿命要求。从单个模块(包括专用驱动器)到高功率 SKiiP 4/7 IPM 和即用型电力电子堆栈 - 我们都有解决方案。
摘要本文展示了将自主网络防御应用于工业控制系统上的潜力,并提供了一个基线环境,以进一步探索多代理强化学习(MARL)对此问题领域的应用。它引入了通用集成平台管理系统(IPMS)的模拟环境,IPMSRL,并探讨了MARL对基于通用海事的IPMS Operational Technology(OT)的自动网络防御决策的使用。网络防御行动不如企业对IT的成熟。 这是由于OT基础架构的相对“脆性”性质源于使用传统系统,设计时间工程假设以及缺乏全面的现代安全控制。 ,由于不断增加网络攻击的复杂性以及传统以IT中心的网络防御解决方案的局限性,在网络景观中有许多障碍。 传统的IT控件很少在OT基础架构上部署,并且在它们的位置,某些威胁尚未完全解决。 在我们的实验中,多代理近端策略优化(MAPPO)的共享评论家实施优于独立近端策略优化(IPPO)。 Mappo达到了800K时间段之后的最佳政策(情节结果平均值),而IPPO只能达到一百万个时间段的情节结果平均值为0.966。 超参数调整大大改善了训练性能。网络防御行动不如企业对IT的成熟。这是由于OT基础架构的相对“脆性”性质源于使用传统系统,设计时间工程假设以及缺乏全面的现代安全控制。,由于不断增加网络攻击的复杂性以及传统以IT中心的网络防御解决方案的局限性,在网络景观中有许多障碍。传统的IT控件很少在OT基础架构上部署,并且在它们的位置,某些威胁尚未完全解决。在我们的实验中,多代理近端策略优化(MAPPO)的共享评论家实施优于独立近端策略优化(IPPO)。Mappo达到了800K时间段之后的最佳政策(情节结果平均值),而IPPO只能达到一百万个时间段的情节结果平均值为0.966。超参数调整大大改善了训练性能。在一百万个时间段中,调整后的超参数达到了最佳策略,而默认的超参数只能偶尔赢得胜利,大多数模拟导致抽签。我们测试了现实世界中的约束,攻击检测警报成功,并发现当警报成功概率降低到0.75或0.9时,MARL Defenders仍然能够分别在97.5%或99.5%的情节中获胜。
执行摘要本项目提供了有关实施2021年5月的14个建议的进度最新信息,该报告摄政工作组关于创新转移和企业家精神的报告,概述了UC创新生态系统的整体观点,并提出了解决UC Innovation转移策略,实践,实践,技术和技术构建中所面临的挑战的建议。此项目是2023年8月与创新转移和企业家特别委员会共享状态报告的后续介绍,其中包括有关知识产权管理解决方案(IPMS)替代项目以及利益冲突以及承诺政策冲突的最新信息。它还包括有关总统企业家网络委员会的概念证明(POC)基金的更新。
致谢 非常感谢 David Aiken 在准备本数据表时提供的帮助和指导。参考文献 1) TM 9-1985-4/TO 39B-1A-11 日本爆炸性军械,第 1 部分,陆军部技术手册/空军部技术命令,1953 年 3 月。2) OPNAV 30-38M 日本爆炸性军械手册,海军部,1945 年 8 月 15 日(Jim Lansdale 复印了部分手册)。3) David Aiken,著名的珍珠港历史学家,私人通信。4) “日本雷鱼”,John De Virgilio 著,《海军历史》,1991 年冬季。5) Bryan Wilburn 在《Pri-Fly》(华盛顿特区 IPMS 分会出版物)中,Urs Bopp 的复印件,日期不详,但估计约 1985 年。6) 《世界著名飞机》,#154,1986 年 3 月。7) 《世界著名飞机》(新系列),#32,1992 年 1 月。8) 《朝日杂志》,第3 期。2。9) Ian Baker 的《航空历史彩色书籍》,第 154 卷。36、40 和 41。10) J-aircraft.com 帖子,多种多样
开发了同步辐射X射线(SR)分层照相和衍射方法,实现了对智能功率模块(IPM)内部退化行为的无损测量。通过SR分层照相跟踪IPM样品纳米颗粒Cu键合层的疲劳行为表明,大的聚集Cu簇引入了曲折裂纹和裂纹分支,从而降低了裂纹扩展速率,有望延长疲劳寿命。老化过程中的分层照相测量表明,纳米颗粒Cu的氧化是降低键合强度的主要退化模式,通过添加Bi和Sn可以改善键合强度。开发的旋转螺旋狭缝系统实现了IPM样品键合层中的空间分辨衍射测量。利用该技术可以获得IPM中应力和应变的内部分布图。SR分层成像与基于螺旋狭缝的衍射技术相结合将成为下一代IPM可靠性分析的有力工具。
现代加速器首选非侵入式测量方法来表征束流参数。电离轮廓监测器 (IPM) [1–3] 和束流诱导荧光监测器 (BIF) [4–8] 被广泛用作许多加速器中的非侵入式束流轮廓监测器。在此类监测器中,粒子束与残留气体相互作用,导致气体分子电离或发射荧光。束流与气体相互作用产生的副产物可以通过外部电磁场(离子和电子)收集,或使用独立光学系统(荧光)检测,以提供初级束流的一维分布信息。根据背景压力水平,它们通常需要较长的积分时间或加载额外的工作气体。后者将产生较大的压力凸起区域,并可能导致初级束流性能下降
图中数据管理和决策分为 6 个级别,第 1 级包含最简单的设备或组件,具有基本的智能功能(处理简单算法并缩短响应时间);第 2 级智能系统使用 IoT 就绪 PLC 来允许执行和编排第 1 级智能设备的策略指令;第 3 级代表边缘计算资源级别,包括集成服务系统 (SSI)。第 4 级包含增强型 IPMS(图中为 SICP),用于健康管理以及整个平台系统功能管理。第 5 级包括机载数字孪生数字平台,可用于执行用例兴趣分析以及管理在配置管理框架内开发的应用程序下的数字模型数据集和应用算法。第 6 级通常在陆地(最终用户 Navantia)实施 DT 生态系统的其他数字平台部分。第 7 级代表在需要时在网络安全方面受到控制的云资源。
现在,弗劳恩霍夫 LSC-Onco (激光扫描肿瘤学) 项目的研究人员通过将激光扫描显微镜和荧光肿瘤标记物相结合,找到了快速、可靠的解决方案。使用显微镜,医生可以检查肿瘤切除区域周围的组织——甚至无需离开手术室。弗劳恩霍夫生物医学微电子和光学系统中心 MEOS 负责人 Michael Scholles 解释说:“预先应用的荧光标记物可让医生看到切口后可能残留的任何癌细胞。然后可以非常精确地完全切除这些细胞。”该技术由埃尔福特弗劳恩霍夫中心开发,MEOS 在这里研究生命科学、微电子、光学和光子学领域的关键技术。该项目涉及德累斯顿弗劳恩霍夫光子微系统研究所 IPMS 和莱比锡弗劳恩霍夫细胞治疗和免疫学研究所 IZI 的研究人员。
签订 CSC 合同 L3Harris 是加拿大水面作战 (CSC) 项目的关键参与者,他的部门负责 ICS、IPMS 和其他平台解决方案,据 Kasturi 称,这种情况不仅仅关乎“天时地利人和”。他观察到:“我们之所以取得如此成功,并不是因为保守和安全。我们充分发挥了我们所拥有的每一点才能和能力,为海军和造船厂客户的众多挑战和问题开发了创新有效的解决方案,但又不会太超前。这只是漫长过程的开始,而不是结束。例如,到 CSC 项目成熟时,我们将已经超越了当前的产品,并将寻求明智地引入技术来满足 RCN 不断变化的需求。”该部门独特性质的核心解决方案——系统集成、自动化、模拟和网络安全——源自“一支才华横溢的员工团队”,Kasturi 称他自称是“一名自豪的电气工程师”。最终结果是先进、可靠、强大、具有全球竞争力,而且最重要的是,不受国际武器贸易条例 (ITAR) 约束的技术和业务解决方案。
