长 QT 综合征 (LQTS) 是一种有害的心律失常综合征,主要由离子通道的表达失调或功能异常引起。室性心律失常、心悸和晕厥的主要临床症状因 LQTS 亚型而异。恶性心律失常的易感性是心肌细胞动作电位 (AP) 复极延迟的结果。LQTS 有 17 种不同的亚型,与 15 种具有单基因突变的常染色体显性基因有关。然而,由于修饰基因的存在,相同的突变可能导致不同携带者的临床表现完全不同。在这篇综述中,我们描述了各种离子通道在协调 AP 中的作用,并讨论了各种类型 LQTS 的分子病因。我们重点介绍了使用患者特定的诱导多能干细胞 (iPSC) 模型来表征与 LQTS 相关的基本机制。为了减轻 LQTS 的后果,治疗策略最初侧重于针对离子通道活性的小分子。下一代治疗将从 LQTS 患者特异性 iPSC 平台的开发中获益,该平台由全基因组测序、CRISPR 基因组编辑和机器学习等最先进的技术提供支持。使用 LQTS 患者特异性心肌细胞进行深度表型分析和高通量药物测试预示着 LQTS 精准医疗的到来。
诱导的多能干细胞(IPSC)源自使用四个Yamanaka转录因子对成年体细胞的重编程。自发现以来,干细胞(SC)领域就达到了重要的里程碑,并在疾病建模,药物发现和再生医学领域开设了多个门户。同时,聚类的定期插入短的短质体重复序列(CRISPR) - 相关蛋白9(CRISPR-CAS9)彻底改变了基因组工程的范围,从而允许产生遗传上修改的细胞系,并实现精确的基因组重组或随机插入/插入/删除的应用程序,用于使用WIREDIRESS,WIREDIRESS。心血管疾病代表着不断增加的社会问题,对潜在的细胞和分子机制的了解有限。IPSC分化为多种细胞类型与CRISPR-CAS9技术相结合的能力可以实现对潜在疗法的病理生理机制或药物筛查的系统研究。此外,这些技术可以通过调节靶向蛋白的表达或抑制来提供心血管组织工程(TE)方法的细胞平台,从而为设计新的细胞系和/或精细仿生生物仿生支架提供了可能性。本综述将重点介绍IPSC,CRISPR-CAS9的应用以及其在心血管TE领域的结合。特别是,将讨论此类技术的临床转换性,从疾病建模到药物筛查和TE应用。
stemscale TM PSC悬浮培养基,设计用于CGT制造,可实现PSC的大规模培养。天然杀伤(NK)细胞是先天的,细胞毒性的淋巴免疫细胞,可以杀死恶性细胞而无需HLA匹配,并且是同种异体治疗发展的主要重点。nk细胞疗法临床试验表明,有效治疗可能需要〜5x10 6-1x10 8 nk细胞。但诸如捐助者采购和成功扩展之类的要求妨碍了有效产生大量功能性NK细胞的能力。在这里,我们描述了一种产生PSC衍生的NK(墨水)细胞的方法,该方法从CTS-STAMScale悬浮培养物中,使能够以可扩展的培养格式产生高度富集的功能性油墨。PSC在悬浮液中生长,因为使用生长因子鸡尾酒诱导球体,以区分CD34+造血祖细胞,然后在不使用进料细胞的情况下转化为CD56+墨水细胞。CTS TM NK-Xpander TM中墨水细胞的进一步培养导致CD56+CD3-和CD56+CD16+表型的显着富集。这些墨水的细胞溶性通过它们杀死K562癌细胞以及患者来源的3D结肠肿瘤的能力进一步证明了这些墨水。总而言之,CTS茎扫描的使用突出了馈线 - 游离PSC悬浮培养物的潜力,以分为大规模的细胞溶解油墨。
摘要背景:具有亚皮质囊肿(MLC)是一种涉及白质的罕见和进行性神经退行性疾病,并未被当前疾病模型充分概括。体细胞重编程,以及基因组工程的进步,可以允许建立用于疾病建模和药物筛查的MLC的体外人类模型。在这项研究中,我们利用细胞重编程和基因编辑技术来开发MLC的诱导多能干细胞(IPSC)模型来概括经典MLC影响的神经系统的细胞环境。方法:外周患者衍生的血液单核细胞(PBMC)的体细胞重编程用于开发MLC的IPSC模型。CRISPR-CAS9基于系统的基因组工程也用于创建该疾病的MLC1敲除模型。以2D细胞培养形式进行了IPSC与神经干细胞(NSC)和星形胶质细胞的分化,然后进行各种细胞和分子生物学方法,以表征疾病模型。结果:由体细胞重编程和基因组工程建立的MLC IPSC的多能性具有很好的特征。IPSC随后与疾病相关的细胞类型分化:神经干细胞(NSC)和星形胶质细胞。 MLC NSC的RNA测序分析揭示了与神经系统疾病和癫痫有关的一组差异表达的基因,这是MLC疾病中常见的临床发现。 该基因集可以作为筛查该疾病潜在治疗性的药物筛查的靶标。IPSC随后与疾病相关的细胞类型分化:神经干细胞(NSC)和星形胶质细胞。MLC NSC的RNA测序分析揭示了与神经系统疾病和癫痫有关的一组差异表达的基因,这是MLC疾病中常见的临床发现。该基因集可以作为筛查该疾病潜在治疗性的药物筛查的靶标。在分化与疾病相关的细胞类型 - 星形胶质细胞后,明确观察到了MLC特征液泡,这在对照组中显然不存在。这种出现概括了该疾病的显着表型标记。结论:通过MLC的IPSC模型的创建和分析,我们的工作解决了对MLC相关细胞模型的迫切需求,用于用于疾病建模和药物筛查测定法。进一步研究可以利用MLC IPSC模型以及生成的转录组数据集和分析,以确定这种衰弱疾病的潜在治疗干预措施。关键字:体细胞重编程,CRISPR-CAS9系统,指示分化引言概括性白细胞脑病带有皮层囊肿(MLC)是一种涉及白质的缓慢进行性退化性脑疾病,它是MLC1或GLC1或GLIAL CAMCAM CAMES跨越的病原变异的结果。这种疾病首先是由荷兰的Marjo van der Knaap博士独立发现的(van der Knaap等,1995),印度阿格拉瓦尔社区中的Bhim Sen Singhal博士(Singhal等,1996)。因此,MLC也被称为Van der Knaap-Singhal疾病(Van der Knaap等,2012)。因果变异的三个主要类别是:MLC1中的常染色体隐性突变,一种常染色体隐性隐性和glialcam中的常染色体显性突变(Capdevila-Nortes等,2013)。MLC1是第一个引起MLC并映射到22QTEL染色体的基因(Topçu等,2000; Leegwater等,2001)。MLC1转化为主要在大脑内的星形胶质细胞中表达的蛋白质(MLC1),尤其是在与血脑屏障的星形细胞末端脚接触(Masaki et al。,2012),在PIA MATER中,以及在Synaptic Cleft(Kater等人2023)中存在的星形胶质细胞。MLC患者的结构特征和观察到的大脑缺陷,例如脑水肿,液体填充囊肿,星形胶质细胞的空泡和降低降低,这表明MLC1可能调节
摘要人类卵巢卵泡的体外模型将极大地有益于女性繁殖的研究。卵巢发育需要生殖细胞和几种类型的体细胞的结合。其中,颗粒细胞在卵泡形成和对卵子发生的支持中起关键作用。存在有效的方案来产生人类诱导的多能干细胞(HIPSC)的人类原始生殖细胞样细胞(HPGCLC),但产生颗粒细胞的一种方法是难以捉摸的。在这里,我们报告说,两个转录因子(TFS)的同时过表达可以将hipsc的分化指向颗粒样细胞。我们阐明了几种与颗粒相关的TF的调节作用,并确定NR5A1的过表达和Runx1或Runx2足以生成类似颗粒状的细胞。我们的颗粒状细胞具有类似于人类胎儿卵巢细胞的跨文章组,并概括了包括卵泡形成和类固醇生成在内的关键卵巢表型。与HPGCLC聚集时,我们的细胞形成卵巢样类器官(卵形),并支持从迁移到性腺阶段的HPGCLC发育,这是通过诱导DAZL表达来衡量的。该模型系统将为研究人类卵巢生物学提供独特的机会,并可以开发女性再生健康的疗法。
由于与人类生物学相似性高,非人类灵长类动物 (NHP) 模型对于开发基于诱导性多能干细胞 (iPSC) 的细胞和再生器官移植疗法非常有用。然而,关于 NHP-iPSC(尤其是恒河猴 iPSC)的建立、分化和遗传改造的知识有限。我们通过结合 Yamanaka 重编程因子和两种抑制剂(GSK-3 抑制剂 [CHIR 99021] 和 MEK1/2 抑制剂 [PD0325901]),成功地从恒河猴外周血 (Rh-iPSC) 中建立了 iPSC,并通过造血祖细胞将这些细胞分化为功能性巨噬细胞。为了证实 Rh-iPSC 衍生的巨噬细胞作为疾病模型生物测定平台的可行性,我们通过 CRISPR-Cas9 敲除了 Rh-iPSC 中的 TRIM5 基因,这是一种物种特异性 HIV 抗性因子。TRIM5 敲除 (KO) iPSC 具有与 Rh-iPSC 相同的巨噬细胞分化潜能,但分化后的巨噬细胞在体外对 HIV 感染的敏感性有所增加。我们用于获得 Rh-iPSC 衍生的巨噬细胞的重编程、基因编辑和分化方案可应用于其他基因突变,从而扩大 NHP 基因治疗模型的数量。
由于与人类生物学相似性高,非人类灵长类动物 (NHP) 模型对于开发基于诱导性多能干细胞 (iPSC) 的细胞和再生器官移植疗法非常有用。然而,关于 NHP-iPSC(尤其是恒河猴 iPSC)的建立、分化和遗传改造的知识有限。我们通过结合 Yamanaka 重编程因子和两种抑制剂(GSK-3 抑制剂 [CHIR 99021] 和 MEK1/2 抑制剂 [PD0325901]),成功地从恒河猴外周血 (Rh-iPSC) 中建立了 iPSC,并通过造血祖细胞将这些细胞分化为功能性巨噬细胞。为了证实 Rh-iPSC 衍生的巨噬细胞作为疾病模型生物测定平台的可行性,我们通过 CRISPR-Cas9 敲除了 Rh-iPSC 中的 TRIM5 基因,这是一种物种特异性 HIV 抗性因子。TRIM5 敲除 (KO) iPSC 具有与 Rh-iPSC 相同的巨噬细胞分化潜能,但分化后的巨噬细胞在体外对 HIV 感染的敏感性有所增加。我们用于获得 Rh-iPSC 衍生的巨噬细胞的重编程、基因编辑和分化方案可应用于其他基因突变,从而扩大 NHP 基因治疗模型的数量。
遗传性视网膜营养不良(IRD)的特征是进行性光感受器变性和视力丧失。Usher综合征(USH)是一种综合征IRD,其特征是色素性视网膜炎(RP)和听力损失。USH在临床和基因上是异质的,最普遍的病因基因是USH2A。USH2A突变还解释了大量孤立的常染色体隐性RP(ARRP)病例。这种高预期是由于两个经常性的USH2A突变引起的,C.2276G> T和C.2299delg。由于USH2A cDNA的大尺寸,基因增强疗法是无法访问的。但是,CRISPR/CAS9介导的基因组编辑是可行的替代方法。我们使用了增强的链球菌链球菌(ESPCAS9)的特异性CAS9来成功实现诱导多能干细胞(IPSC)患者的两个最普遍的USH2A突变的无缝校正。我们的结果强调了促进ESPCAS9的高目标效率和特种型的功能。一致地,我们没有在校正后的IPSC中识别出任何非靶诱变,这些诱变也保留了多能性和遗传稳定性。此外,对USH2A表达的分析出乎意料地识别了与C.2276G> T和C.229999delg突变相关的异常mRNA水平,这些突变在校正后恢复。综上所述,我们有效的CRISPR/CAS9介导的USH2A突变校正策略为USH和ARRP患者提供了潜在治疗的希望。
Gwangju科学技术研究所,Gwangju 61005,大韩民国B Rajshahi大学应用化学与化学工程系的材料科学与工程学院,Rajshahi Universition,Rajshahi Universition,Rajshahi Universition 6205悉尼,15岁,百老汇,悉尼,新南威尔士州,2007年,澳大利亚E工程学院,伊迪丝·考恩大学(Edith Cowan University),Joondalup,华盛顿州6027,澳大利亚。
在高风险的药物研发领域,高达 92% 的失败率阻碍了从实验室到临床的进程,这主要是由于临床试验中无法预测的毒性和治疗效果不足。FDA 现代化法案 2.0 预示着一种变革性方法的出现,倡导将替代方法与传统动物试验相结合,包括采用人类诱导多能干细胞 (iPSC) 衍生的类器官和器官芯片技术进行细胞检测,并结合复杂的人工智能 (AI) 方法。我们的综述探讨了 iPSC 衍生的临床试验在为心血管疾病研究设计的培养皿模型中的创新能力。我们还强调了 iPSC 技术与 AI 的结合如何加速可行的治疗候选物的识别、简化药物筛选并为更加个性化的医疗铺平道路。通过此,我们全面概述了研究界和制药行业正在探索的 iPSC 和 AI 应用的当前前景和未来影响。
