图1:从sbolcanvas导出的图像,显示遗传回路中组件和模块之间的相互作用。尤其是该图表明LACI生产者模块的零件可以编码抑制PTAC启动子的LACI蛋白。显示的另一个例子相互作用是IPTG小分子与LACI蛋白结合以形成IPTG LACI复合物。这种相互作用隔离了LACI蛋白,因此无法抑制PTAC启动子。
NEB为许多蛋白质表达应用提供了多种胜任的细胞菌株。这些菌株解决了蛋白质表达控制,有毒蛋白表达,细胞质二硫键形成,困难靶标和晶体学的需求。NEB T7 Express和Shuffle™菌株具有不同的控制水平。i Q菌株具有LACI Q对IPTG诱导的非T7质粒表达的附加控制。只有NEB提供了从乳糖基因中对表达的特殊控制,从而在不抑制IPTG诱导的表达的情况下降低了T7菌株的基础表达。我们的LEMO21(DE3)菌株具有可调T7表达的困难靶标,例如膜蛋白和容易发生表达的蛋白质(有关更多详细信息,请参见相反的特征)。为每个应变提供了一个详细协议,以进行最佳表达。
系统和JAVA Codon Adaptation Tool 进行密码子适配。优化后的序列由上海生工生物工程有限公司通过 BamH1 和 XhoI 酶切位点合成并克隆到来自 pGEX-6p-1 质粒(美国 Novagen)的表达载体中。将重组质粒 pGEX-6p-1-Mpro 转化的 E. coli BL21(DE3)细胞(美国 Invitrogen)在 2 L Luria-Bertani 培养基中于 37 ℃ 下生长至 OD600 达到 0.6 后,加入 0.2 mM IPTG,16 ℃ 诱导重组蛋白表达过夜。将菌体悬浮在 PBS 中,超声波破碎。离心收集上清液并与谷胱甘肽 Sepharose 4B 琼脂糖(美国 GE Healthcare)混合,4 ℃ 下孵育 3 h。然后用 PBS 清洗珠子,并加入 preScission 蛋白酶 (GE) 以切割 GST 标签。含有
由Genewiz(中国苏州)合成了六个L-硫醇脱氢酶候选候选物,并通过NDE和Xhoi限制位点合成并连接到表达载体PET28A中。大肠杆菌BL21-GOLD(DE3)细胞将带有不同重组质粒的细胞接种到5 ml Lb液体培养基(50μg/ml卡纳米霉素)中,并在37°C下过夜,然后在37°C中培养过夜,然后将其转移到25 ml LB液体培养基(50μg/ml kananamycin)中,并与1:100:100:100:100:100:100:50μg/ml kananamycin)培养。在37°C下以220 rpm摇动所有烧瓶。当600 nm(OD 600)的光密度达到0.6-0.8时,使用0.1 mM异丙基β-D-1-硫代乙型甲酰胺糖苷(IPTG)在20°C下诱导基因表达24小时。随后,将2个mL细胞培养物以12000 rpm离心10分钟。收集细胞并将其重悬于500μl磷酸盐缓冲液(50 mM KPI,5 mM MGSO 4,pH 7.4)中,然后随后
图 1 RolR 诱变、选择和半自动化高通量筛选工作流程。a. 全构象的 RolR 二聚体(PDB:3AQT),以及配体结合口袋的结构,其中残基 D149 为黑色,间苯二酚为青色,5Å 内选择用于诱变的 19 个残基为橙色,5Å 和 8Å 之间的残基为紫色。b. 组合活性位点饱和度测试 (CAST) 的笛卡尔结合口袋图。c. 六个氨基酸组组成了要用于诱变的 19 个残基。d. 生物传感器 TetA 双重选择的原理,使用 NiCl 2 对转录抑制能力进行负向选择,使用四环素对目标配体进行正向选择。e. 半自动化高通量筛选。在第 1 天,为每个候选分子挑选约 500 个菌落。第二天,使用声学液体处理器将 IPTG 和小分子分配到 384 孔板中。生长的菌落被稀释并分配到 384 个孔板中,使用液体处理工作站测试传感器的不同状态。第三天,荧光
蜂蜜蜜蜂是探测宿主的强大模型系统 - 近距离菌群相互作用,也是自然生态系统和农业的重要传粉媒介物种。虽然细菌生物传感器可以对宿主与其相关的菌群之间发生的复杂相互作用提供批判性的见解,但缺乏非侵入性的肠道含量进行采样的方法,以及对工程师Symbionts的有限遗传工具,到目前为止,它们在蜜蜂中的发展促成了它们的发展。在这里,我们构建了一个多功能分子工具套件,以基因修改共生体,并在蜜蜂中首次报告了一种用于采样其粪便的技术。我们将天然的蜜蜂肠道细菌snodgrassella alvi作为IPTG的生物传感器,其工程细胞通过表达荧光蛋白的表达来稳定地定居于蜜蜂蜜蜂的肠道,并以剂量依赖性的方式暴露于骨骼。我们表明可以在肠道组织中测量荧光读数或在粪便中无创测量。这些工具和技术将使工程细菌的快速建立能够回答宿主 - 近距离微生物群研究中的基本问题。
植物和微生物进行沟通以制止害虫,清除营养,并对环境变化做出反应。由物种的菌群组成的微生物群相互相互作用,并使用复杂的调节网络来解释的大型化学语言相互作用。在这项工作中,我们开发了模块化的跨沟通通道,使细菌能够向植物传达环境刺激。我们在Pseudomonas putida和Klebsiella肺炎中引入了一个“发件人设备”,该肺炎会产生小分子P-coumaroyl-Homoserine Lactone(PC-HSL),当传感器或电路的输出打开时。该分子触发植物中的“接收器装置”以激活基因表达。我们在拟南芥和结核菌(马铃薯)中验证了该系统,并在土壤中生长,通过交换细菌来表明其模块化,这些细菌可以处理不同的刺激,包括IPTG,ATC和砷。可编程沟通通道和植物之间的可编程通信通道将使微生物前哨向农作物传输信息,并提供设计人工联盟的基础。
Pfu DNA 聚合酶是一种源自超嗜热古菌 Pyrococcus furiosus 的耐热酶,因其高保真度和强大的加工性而广受认可。它的 3'-5' 核酸外切酶活性使其成为正确扩增短链和复杂 DNA 链不可或缺的酶。Pfu DNA 聚合酶的这些生化特性促进了其提取和生产方法的重大进步。本综述涵盖了一些传统的纯化方法,包括蛋白质纯化和亲和层析,以及重组基因表达、自动化生产系统和基于膜的技术的最新进展。最近开发了新的酶工程方法,例如 CRISPR-Cas9 介导的基因优化,这提高了提取效率的标准以满足新兴需求。曾经具有挑战性的 Pfu DNA 聚合酶生产已通过在实验室和商业规模的大肠杆菌中重组表达得到了显着简化。涉及 IPTG 浓度和响应面方法的优化技术已将产量提高了 30%。自诱导意味着可以实现更高的生物量输出。如今,Pfu DNA 聚合酶的应用范围从标准 PCR 到分子生物学、法医分析、临床微生物学和生物技术领域的高级临床诊断。
假单胞菌 KT2440 是一种研究较为深入的细菌,可将木质素衍生的芳香族化合物转化为生物产品。假单胞菌中先进遗传工具的开发缩短了假设检验的周转时间,并使得能够构建能够生产各种目标产品的菌株成为可能。在这里,我们评估了可诱导 CRISPR 干扰 (CRISPRi) 工具集对荧光、必需和代谢靶标的作用。结果表明,用阿拉伯糖 (8K) 诱导启动子表达的核酸酶缺陷型 Cas9 (dCas9) 在各种培养基条件下以及靶向必需基因时均受到严格调控。除了批量生长数据外,还进行了单细胞延时显微镜检查,结果显示同克隆群体中敲低率的内在异质性。在指数增长的细胞中,研究了跨基因组靶标的敲低动力学,发现诱导后普遍存在 1.75 ± 0.38 小时的静止期,其中发生 1.5 ± 0.35 次倍增后才会观察到表型反应。为了展示这套 CRISPRi 工具集的应用,β-酮己二酸(一种性能优越的尼龙单体)以 4.39 ± 0.5 g/L 的浓度和 0.76 ± 0.10 mol/mol 的产量从对香豆酸(一种可从禾本科植物中提取的羟基肉桂酸)中生产出来。这些培养指标是通过使用更高强度的 IPTG (1K) 诱导启动子在指数期早期敲低 β KA 途径中的 pcaIJ 操纵子来实现的。这使得大部分碳被分流到所需产品中,同时无需补充碳和能量来源来支持生长和维持。
简介:紫皮蛋白是一种由各种细菌产生的双座,众所周知,可以显示出广泛的药物特性。不幸的是,天然紫饼蛋白生产商的生产力低,导致了不一致的紫cile蛋白供应,从而限制了其作为未来治疗剂的应用。异源表达系统,例如大肠杆菌和Pichia Pastoris,提供了一种产生这些高价值的次级代谢物的替代方法。这项工作描述了大肠杆菌中紫质蛋白异源生产的遗传体系的发展。方法:紫c。violaceum,mth01的生产者是从马来西亚马来西亚大学的林理学基础上分离出来的。使用基因特异性底漆,整个7.3 Kb紫out基因簇从C. volaceum mth01 DNA成功扩增,克隆到PUC19矢量(PVIO19)中,然后分别为PET-3A和PET-3A和PET-11B,分为PVIO3A和PVIO3A和PVIO11B,分别为PET-3A和PET-11B。为异源表达,优化了碳源,温度,诱导剂(IPTG)和L-色氨酸的参数。使用TLC和FTIR分析了从紫色的大肠杆菌转化体中提取的violacein。结果:几天后,含有PVIO3A或PVIO11B的大肠杆菌转化体开发了紫色菌落,表明紫co菌菌素在大肠杆菌中成功表达。TLC分析显示,RF值可与脱氧维奥莱辛(紫氧化紫葡萄丝(Deoxyviolacein)(一种中介代谢物)中的脱氧葡萄蛋白相媲美,而FTIR光谱揭示了胺和羰基的存在,这两个都是吲哚的特征。结论:此处描述的大肠杆菌异源系统可以利用葡萄糖或甘油作为碳源。将L-色氨酸添加到生长培养基中对于成功表达紫col途径是必要的。
