IKE 互联网密钥交换协议 INRIA 法国国家信息和自动化研究所 IP 互联网协议 IPng/IPv6 下一代互联网协议/版本 6 IPSec 互联网协议安全(身份验证、数据完整性、加密) IPv4 互联网协议版本 4 ISDN 综合业务数字网 LAN 局域网 LEO 低地球轨道 MCS 多机驾驶舱模拟器 MoU 谅解备忘录 NSM 网络服务管理 OSI 开放系统互连 OSPF 开放最短路径优先 PRIMA IP 移动自组织网络项目 QoS 服务质量 RAT 强健音频工具 RFC 征求意见 RIP 路由信息协议 RM 可靠多播 RNRT 法国国家电信网络 SARP 建议实践标准(国际民航组织) UCL 伦敦大学学院 UDLR 单向链路路由协议 UMTS 通用移动电信系统 VIC 视频会议应用程序 VPN 虚拟专用网络 XDSL X 数字用户线路
IKE 互联网密钥交换协议 INRIA 法国国家信息和自动化研究所 IP 互联网协议 IPng/IPv6 下一代互联网协议/版本 6 IPSec 互联网协议安全性(身份验证、数据完整性、加密) IPv4 互联网协议版本 4 ISDN 综合业务数字网 LAN 局域网 LEO 低地球轨道 MCS 多机驾驶舱模拟器 MoU 谅解备忘录 NSM 网络服务管理 OSI 开放系统互连 OSPF 开放最短路径优先 PRIMA IP 移动自组织网络项目 QoS 服务质量 RAT 强健音频工具 RFC 征求意见 RIP 路由信息协议 RM 可靠多播 RNRT 法国国家电信网络 SARP 建议实践标准(国际民航组织) UCL 伦敦大学学院 UDLR 单向链路路由协议 UMTS 通用移动电信系统 VIC 视频会议应用程序 VPN 虚拟专用网络 XDSL X 数字用户线路
IKE 互联网密钥交换协议 INRIA 法国国家信息和自动化研究所 IP 互联网协议 IPng/IPv6 下一代互联网协议/版本 6 IPSec 互联网协议安全(身份验证、数据完整性、加密) IPv4 互联网协议版本 4 ISDN 综合业务数字网 LAN 局域网 LEO 低地球轨道 MCS 多机驾驶舱模拟器 MoU 谅解备忘录 NSM 网络服务管理 OSI 开放系统互连 OSPF 开放最短路径优先 PRIMA IP 移动自组织网络项目 QoS 服务质量 RAT 强健音频工具 RFC 征求意见 RIP 路由信息协议 RM 可靠多播 RNRT 法国国家电信网络 SARP 建议实践标准(国际民航组织) UCL 伦敦大学学院 UDLR 单向链路路由协议 UMTS 通用移动电信系统 VIC 视频会议应用程序 VPN 虚拟专用网络 XDSL X 数字用户线路
IKE 互联网密钥交换协议 INRIA 法国国家信息和自动化研究所 IP 互联网协议 IPng/IPv6 下一代互联网协议/版本 6 IPSec 互联网协议安全性(身份验证、数据完整性、加密) IPv4 互联网协议版本 4 ISDN 综合业务数字网 LAN 局域网 LEO 低地球轨道 MCS 多机驾驶舱模拟器 MoU 谅解备忘录 NSM 网络服务管理 OSI 开放系统互连 OSPF 开放最短路径优先 PRIMA IP 移动自组织网络项目 QoS 服务质量 RAT 强健音频工具 RFC 征求意见 RIP 路由信息协议 RM 可靠多播 RNRT 法国国家电信网络 SARP 建议实践标准(国际民航组织) UCL 伦敦大学学院 UDLR 单向链路路由协议 UMTS 通用移动电信系统 VIC 视频会议应用程序 VPN 虚拟专用网络 XDSL X 数字用户线路
IKE 互联网密钥交换协议 INRIA 法国国家信息和自动化研究所 IP 互联网协议 IPng/IPv6 下一代互联网协议/版本 6 IPSec 互联网协议安全性(身份验证、数据完整性、加密) IPv4 互联网协议版本 4 ISDN 综合业务数字网 LAN 局域网 LEO 低地球轨道 MCS 多机驾驶舱模拟器 MoU 谅解备忘录 NSM 网络服务管理 OSI 开放系统互连 OSPF 开放最短路径优先 PRIMA IP 移动自组织网络项目 QoS 服务质量 RAT 强健音频工具 RFC 征求意见 RIP 路由信息协议 RM 可靠多播 RNRT 法国国家电信网络 SARP 建议实践标准(国际民航组织) UCL 伦敦大学学院 UDLR 单向链路路由协议 UMTS 通用移动电信系统 VIC 视频会议应用程序 VPN 虚拟专用网络 XDSL X 数字用户线路
HMAC Hashed Message Authentication Code HTTPS Hypertext Transfer Protocol Secure ICMP Internet Control Message Protocol IKE Internet Key Exchange IP Internet Protocol IPv4 Internet Protocol version 4 IPv6 Internet Protocol version 6 IPsec Internet Protocol Security MP Management Plane NAT Network Address Translation NIST National Institute of Standards and Technology PP Protection Profile REST Representational State Transfer RSA Rivest, Shamir and Adleman (algorithm for public-key cryptography) SA Security Association SAR Security Assurance Requirement SFR Security Functional Requirement SHA Secure Hash Algorithm SSH Secure Shell SSL Secure Socket Layer ST Security Target TLS Transport Layer Security TOE Target of Evaluation TSF TOE Security Functions UDP User Datagram Protocol URL Uniform Resource Locator VLAN Virtual Local Area Network VM Virtual Machine VPN Virtual Private Network VPNGW Virtual Private Network Gateway
摘要 - 今年,使用最广泛的技术框架之一缺乏特定的物联网(IoT)。专注于通信可靠性和对IPv6标准和互联网通信技术的可靠性,EfficityNet B7社交IoT网络满足了护理和适应性需求。尽管拍摄了高质量的照片,但在系统的培训期间却有一些损失,这需要时间。使用Evolution深度学习建议的这项工作以自动生成用于文本分类任务的EfficityNet B7功能框架。在基于有效网络B7的语言相似性分析模型的背景下,对所提出的方法进行了测试,以查看其是否有效。虽然字符级有效网络B7算法并未引起文本分类问题的关注,但本研究中提出的有效网络B7结构在数据分类任务中表现出了出色的性能。大量的测试表明,它们对中断更具弹性,并且可以影响众多有关用户隐私保护,框架含义和法律要求的语言和信息使用政策的组织。
3。计算机编程和数据结构和算法编程在C,面向对象的编程,阵列,堆栈,排队,链接列表,树,搜索排序技术,哈希和图形。渐近最差的情况和空间复杂性。算法设计技术:贪婪,动态编程和分裂和概述。图形搜索,最小跨越树和最短路径。5。操作系统过程,线程,过程间通信,并发和同步。僵局。CPU计划。内存管理和虚拟内存。文件系统。6。数据库ER -MODEL。关系模型:关系代数,元组演算,SQL。完整性约束,正常形式。文件组织,索引(例如B和B+树)。交易和并发控制。6。数据通信和计算机网络模拟和数字信号,信号特征,多路复用技术,通信通道,开关技术。概念分层。LAN Technologies(以太网)。流量和错误控制技术,切换。IPv4/ipv6,路由器和路由算法(距离向量,链接状态)。TCP/UDP和插座,拥塞控制。应用程序层协议(DNS,SMTP,POP,FTP,HTTP)。
常规 – 所有单元 AM 25 kHz AM 8,33 kHz AM MSK D8PSK 频率范围 118-137 MHz(118-156 MHz 可选) RF 模式 6K80A3EJN 5K00A3EJN 13KOA2D 14KOG1DE 键控时间 < 5ms < 5ms < 5ms < 500uSec 比特率 2,4 kbit/s 频率响应 300-3400 Hz 300-2500 Hz 频率稳定性 < 1.0 ppm 数据端口 RS232、RS485、SIP、NTP、10/100 BaseT 协议 SNMP、RTP、SIP、NTP、TCP/IP、HTTP、TFTP、DHCP 和 IPv6 BITE 监控 VSWR、电压、电流、电平、锁定检测、温度、输出功率、反射功率等电源电压,交流 85 至 264VAC,47-63Hz 电源电压,直流 21.6 - 31.2VDC 负极接地(标准电源上直流输入低于 27VDC 时输出功率降低。使用 PSU-7007 时,全输出功率降至 21.6VDC。在整个直流电压范围内接收器性能不下降 启动时间 < 10 秒。MTBF > 10 年/单位 MTTR < 30 分钟(最低可更换单位)
将现有和未来的通信基础设施整合成一个系统,是未来通信基础设施 (FCI) 的愿景,旨在实现安全、可靠和功能强大的未来 ATM 通信目标。2003 年,国际民航组织表示需要通过渐进方式在航空通信中增加新功能。欧洲空中导航安全组织和美国联邦航空管理局 (FAA) 于 2007 年制定了 17 号行动计划,全面了解了总体需求。2007 年至 2009 年,欧盟研究项目 NEWSKY (NEtWorking the SKY) 启动了全球机载网络设计的首个可行性研究,并制定了基于互联网技术 (IPv6) 的新航空通信网络的初步规范,以满足这些需求。此外,欧盟研究项目 SANDRA(通过整合数据链路、无线电和天线实现无缝航空网络)旨在设计和实施综合航空通信系统,并通过空客 320 上的试验台和进一步的飞行试验对其进行验证。美国联邦航空管理局和欧盟委员会都支持该领域的深入研究,即 NextGen 和 SESAR 计划。当然,在未来的航空数据链路领域,即卫星、L 波段数字航空通信系统 (LDACS)、AeroMACS 方面,还需要付出更多努力,以促进无缝航空网络概念的发展。
