在这份简短的报告中,我们介绍了我们的团队实施的强化学习(RL)[1]来应对在IROS 2024 1举行的第二次AI奥运会竞赛的模拟阶段。The algorithm we employed, Monte- Carlo Probabilistic Inference for Learning COntrol (MC- PILCO) [2], is a Model-Based (MB) RL algorithm that proved remarkably data-efficient in several low-dimensional benchmarks, such as a cart-pole, a ball & plate, and a Furuta pendulum, both in simulation and real setups.mc-pilco也是赢得本次比赛第一版的算法[3]。mc-pilco是MB策略梯度算法的一部分。它通过与系统进行交互来利用收集的数据来得出系统动力学模型并通过模拟系统来优化策略,而不是直接在系统数据上优化策略。应用于物理系统时,这种方法可以比无模型(MF)解决方案高表现和数据效率高。本文的组织如下:第二部分介绍了竞争的目标和设置。第三部分介绍了MC-PILCO算法。 第四节报告了已经执行的实验,最后V节结束了论文。第三部分介绍了MC-PILCO算法。第四节报告了已经执行的实验,最后V节结束了论文。第四节报告了已经执行的实验,最后V节结束了论文。
[80] S. Rezaeiravesh,R。Vinuesa和P. Schlatter。一个不确定性定量框架,用于评估计算流体动力学中的准确性,灵敏度和鲁棒性。J. Comput。SCI。 ,62,101688,2022。 [81] M. Morimoto,K。Fukami,R。Maulik,R。Vinuesa和K. Fukagata。 基于神经网络的流体流量估计中的模型形式的不存在定量。 Nagare J. JPN。 Soc。 流体机械。 ,41,2022。 [82] R. T. Javed,O。Nasir,M。Borit,L。Vanh´ee,E。Zea,S。Gupta,R。Vinuesa和J. Qadir。 下车! AI伦理教育中的孤岛:全球AI课程的无监督主题建模分析。 J. Artif。 Intell。 res。 ,73,933–965,2022。 [83] Moon,R。Murphy,Y。Nakauchi,E。Prestes,B。RaoR.,R。Vinuesa和C.-M。 m orch。 机器人技术在实现联合国可持续发展目标中的作用 - 专家在2021 IEEE/RSJ IROS研讨会上的会议。 IEEE机器人。 Autom。 mag。 ,29,92–107,2022。 [84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。 翅膀中的流量控制和通过深度加强学习发现新方法。 流体,7,62,2022。 [85] R. Vinuesa和S. Le Clainche。 用于复杂流的机器学习方法。 Energies,15,1513,2022。 [86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。SCI。,62,101688,2022。[81] M. Morimoto,K。Fukami,R。Maulik,R。Vinuesa和K. Fukagata。基于神经网络的流体流量估计中的模型形式的不存在定量。Nagare J. JPN。Soc。流体机械。,41,2022。[82] R. T. Javed,O。Nasir,M。Borit,L。Vanh´ee,E。Zea,S。Gupta,R。Vinuesa和J. Qadir。下车!AI伦理教育中的孤岛:全球AI课程的无监督主题建模分析。J. Artif。 Intell。 res。 ,73,933–965,2022。 [83] Moon,R。Murphy,Y。Nakauchi,E。Prestes,B。RaoR.,R。Vinuesa和C.-M。 m orch。 机器人技术在实现联合国可持续发展目标中的作用 - 专家在2021 IEEE/RSJ IROS研讨会上的会议。 IEEE机器人。 Autom。 mag。 ,29,92–107,2022。 [84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。 翅膀中的流量控制和通过深度加强学习发现新方法。 流体,7,62,2022。 [85] R. Vinuesa和S. Le Clainche。 用于复杂流的机器学习方法。 Energies,15,1513,2022。 [86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。J. Artif。Intell。 res。 ,73,933–965,2022。 [83] Moon,R。Murphy,Y。Nakauchi,E。Prestes,B。RaoR.,R。Vinuesa和C.-M。 m orch。 机器人技术在实现联合国可持续发展目标中的作用 - 专家在2021 IEEE/RSJ IROS研讨会上的会议。 IEEE机器人。 Autom。 mag。 ,29,92–107,2022。 [84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。 翅膀中的流量控制和通过深度加强学习发现新方法。 流体,7,62,2022。 [85] R. Vinuesa和S. Le Clainche。 用于复杂流的机器学习方法。 Energies,15,1513,2022。 [86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。Intell。res。,73,933–965,2022。[83]Moon,R。Murphy,Y。Nakauchi,E。Prestes,B。RaoR.,R。Vinuesa和C.-M。 m orch。 机器人技术在实现联合国可持续发展目标中的作用 - 专家在2021 IEEE/RSJ IROS研讨会上的会议。 IEEE机器人。 Autom。 mag。 ,29,92–107,2022。 [84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。 翅膀中的流量控制和通过深度加强学习发现新方法。 流体,7,62,2022。 [85] R. Vinuesa和S. Le Clainche。 用于复杂流的机器学习方法。 Energies,15,1513,2022。 [86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。Moon,R。Murphy,Y。Nakauchi,E。Prestes,B。RaoR.,R。Vinuesa和C.-M。 m orch。机器人技术在实现联合国可持续发展目标中的作用 - 专家在2021 IEEE/RSJ IROS研讨会上的会议。IEEE机器人。Autom。 mag。 ,29,92–107,2022。 [84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。 翅膀中的流量控制和通过深度加强学习发现新方法。 流体,7,62,2022。 [85] R. Vinuesa和S. Le Clainche。 用于复杂流的机器学习方法。 Energies,15,1513,2022。 [86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。Autom。mag。,29,92–107,2022。[84] R. Vinuesa,O。Lehmkuhl,A。Lozano-Dur´an和J. Rabault。翅膀中的流量控制和通过深度加强学习发现新方法。流体,7,62,2022。[85] R. Vinuesa和S. Le Clainche。用于复杂流的机器学习方法。Energies,15,1513,2022。[86] N. Tabatabaei,R。Vinuesa,R。Orléu和P. Schlatter。在rans模拟中,边界层的湍流跳闸技术。流湍流。燃烧。,108,661–682,2022。[87] N. Tabatabaei,M。Hajipour,F。Mallor,R。Orloul - Orl u,R。Vinuesa和P. Schlatter。使用风洞测量值对NACA4412唤醒建模。流体,7,153,2022。[88] G. R. McPherson,B。Sirmacek和R. Vinuesa。质量灭绝事件的环境阈值。结果工程。,13,100342,2022。[89] D. Mamchur,J。Peksa,S。LeClainche和R. Vinuesa。用于非侵入对象检查的射线照相和新技术的应用和进步。传感器,22,2121,2022。[90] R. Raman,P。Singh,V。K. Singh,R。Vinuesa和P. Nedungadi。了解IEEE访问中出版物的文献计量模式。IEEE访问,10,35561–35577,2022。[91] M. Atzori,W。Kéopp,S。W. D. Chien,D。Massaro,F。Mallor,A。Peplinski,M。Rezaei,N。Jansson,S。Markidis,R。Vinuesa,E。Laure,P。Schlatter,P。Schlatter和T. Weinkauf。用paraview催化剂在NEK5000中大规模湍流模拟的原位可视化。J.超级计算。,78,3605–3620,2022。[92] D. Mamchur,J。Peksa,S。LeClainche和R. Vinuesa。对非侵害对象筛查技术的艺术状态分析。prz。elektrotech。,98,168–173,2022。[93] S. Singh Gill,R。Vinuesa,V。Balasubramanian和S. K. Ghosh。创新的软件系统,用于管理COVID-19大流行的影响。nat。软件。:实践。实验。,52,821–823,2022。[94] R. Vinuesa和B. Sirmacek。可解释的深度学习模型,以帮助实现可持续发展目标。马赫。Intell。 ,3,926,2021。 [95] L. Guastoni,A。Guemes,A。Ianiro,S。Decetti,P。Schlatter,H。Azizpour和R. Vinuesa。 卷积网络模型,以预测壁数量的壁湍流。 J.流体机械。 ,928,A27,2021。 [96] A. Guemes,S。Decetti,A。Ianiro,B。Sirmacek,H。Azizpour和R. Vinuesa。 从粗壁测量到湍流速度场,通过深度学习。 物理。 流体,33,075121,2021。Intell。,3,926,2021。[95] L. Guastoni,A。Guemes,A。Ianiro,S。Decetti,P。Schlatter,H。Azizpour和R. Vinuesa。卷积网络模型,以预测壁数量的壁湍流。J.流体机械。,928,A27,2021。[96] A. Guemes,S。Decetti,A。Ianiro,B。Sirmacek,H。Azizpour和R. Vinuesa。从粗壁测量到湍流速度场,通过深度学习。物理。流体,33,075121,2021。
· “使用高斯过程的分散式信息路径规划”,NSF FRR-NRI PI 会议,美国巴尔的摩,2024 年。[海报展示] · “最佳运动动力学运动规划和信息路径规划”,计算机科学与机器人研讨会,科罗拉多矿业学院,美国戈尔登,2024 年。[口头报告] · “使用高斯过程的分散式联邦学习”,IEEE 多机器人和多智能体系统国际研讨会 (MRS),美国波士顿,2023 年。[口头报告] · “高斯过程的自适应探索-利用主动学习”,IEEE/RSJ 智能机器人与系统国际会议 (IROS),美国底特律,2023 年。[口头和海报展示] · “使用高斯过程替代物的预期方差减少进行自适应采样的闭式主动学习”美国控制会议(ACC),美国圣地亚哥,2023 年。[口头报告]·“用于多机器人系统探索的分散高斯过程学习”马里兰机器人中心研究研讨会,美国学院公园,2023 年 5 月。[口头报告 - 特邀演讲]·“用于自适应采样的高斯过程替代品的可扩展探索-利用主动学习”马里兰机器人中心研究研讨会,美国学院公园,2023 年 5 月。[海报展示]·“使用分散高斯过程的多机器人自适应采样”,分布式自主机器人系统国际研讨会(DARS),法国蒙贝利亚尔,2022 年 11 月。[海报展示]
活动研究生申请导师,AI 2024年酷儿 - 研究生申请援助计划审阅者,AI 2024 Queer,AI 2024 – Communications主席,加固学习会议(RLC)2024 2024研讨会组织者,增强奖励 @ rlc 2024 2024 2024 2024 2024 2024年2024年未来的教师计划参与者,Eberly Center @ cmu 2022- @ cmu 2022- @ cmu 2022- @ CMU 2022- CMU SCS Dean的咨询委员会2021 –▷本科研究参与工作组2021 –▷为研究生提供互动研讨会,以指导研究项目的本科生的最佳实践。进行了IRB批准的研究,以测量训练效果。在Eberly教学峰会上选出的结果。[Workshop Slides and Results Poster] Graduate Application Support Program , CMU Robotics Institute, Mentor 2021–2022 Graduate Application Support Program , CMU Robotics Institute, Organizer 2021 Undergraduate AI Mentoring Program , CMU 2021 Journal Reviewer : IEEE Transactions on Robotics (IEEE T-RO), IEEE Transactions on Information Theory (IEEE T-IT), International Journal of Robotics Research (IJRR), Transactions on ML Research (TMLR) Conference Reviewer : NeurIPS 2021-2023, ICRA 2022/2024, ICML 2023/2024, ICLR 2024, IROS 2024 Workshop Reviewer : Strategic ML @ NeurIPS 2021, Real World Reinforcement Learning @ NeurIPS 2022, Interactive Learning with Implicit Human Feedback @ ICML 2023年,学习,动态和控制 @ icml 2023,机器人学习研讨会 @ Neurips 2023
管理 1. 介绍和背景: 税务局 (IRD) 的业务流程自动化始于 2054 年,由当时的增值税部门使用 FoxPro 程序实现。2057 年,该系统在 Oracle 平台上重新设计和开发。永久帐号 (PAN) 的新概念应运而生,并在当时首次发布。随后,IRD IT 部门成立,以妥善管理 IRD 和 23 个税务局 (IRO) 的 IT 运营。2058 年与所得税部门合并后,通过聘请当地机构,在客户端-服务器架构下开发了联合登记系统。后来,IRD 成立了信息技术管理司,包括信息通信技术 (ICT) 和管理信息系统 (MIS) 两个部门。随后,IRD 开发了具有自我评估功能的所得税、增值税和消费税管理电子系统;具有银行对账功能的收入会计系统 (RAS);具有在线申请功能的纳税人登记系统;具有付款对账功能的 TDS 管理系统具有基于绩效的激励系统管理、电子支付系统等的内部监控系统。十多个小型系统已经整合为一个综合税务系统 (ITS),并且正在通过附加模块进行完善。目前,IRD 组织由位于加德满都拉兹帕特的部门和遍布全国的 43 个 IRO 组成,其中包括一个大型纳税人办公室 (LTO)、一个小级纳税人办公室 (MLTO) 和 39 个纳税人服务办公室 (TSO)。所有办公室都使用不同类型的操作系统、系统软件、邮件系统、服务器、台式机、打印机、路由器、UPS、不同的电子设备(如复印机、PABX、传真机、电话等)。但核心税务系统是通过网络应用程序集中管理的。自开始实施计算机化系统以来,IRD 一直在与当地公司签订合同,以积极监控日常运营、子系统开发、IRD 应用程序的支持和维护以及数据库管理。现有合同即将终止,因此,IRD 正在招标这项工作,并将选择和指派合适的咨询公司负责 IRD 应用程序的开发、支持和维护,以及具有 BI 配置的数据库管理。 2. IRD ICT 应用 作为尼泊尔政府最早的电子政务实施机构之一,IRD 自成立以来一直在使用某种应用软件来处理其日常业务。目前,一种称为综合税务系统 (ITS) 的基于网络的集中式系统处理几乎所有方面的税收管理。正在使用的其他一些应用程序是一些电子系统、API 和 IRD 网站。IRD 有一个覆盖整个尼泊尔的大型通信网络,连接着 43 个 IRO、1 个 LTO、全国范围内有 1 个 MLTO 和 39 个 TSO。该网络还连接了一些其他政府机构,包括财政部、税收调查部、海关部、国家信息技术部 (NITC) 等,以进行信息交换。IRD 在 Lazimpat 建立了本地数据中心,并从那里部署了应用程序。服务器在 Windows Server 2012、2016 和更高版本的 Linux 上运行;客户端在 Windows 2007、Windows 10、Windows 2016、Windows 2019 上运行。IRD 还在 Bhairawaha 建立了 DRC,并使用现代设备和设施投入运营。IRD 将在 DC 附近的政府综合数据中心 (GIDC) 建立。当前使用的应用程序如下:
现代网络物理系统(CPS)是下一代工程系统,其中计算,通信和控制技术紧密整合。应用程序包括系统自动化,物联网(IoT),智能建筑,智能制造,智能城市,数字农业,机器人技术和自动驾驶汽车。生产工程网络物理系统主席成立于2018年9月。In 2023, the research activities of the Chair focused on the following topics: a) design and implement novel resource management policies for embedded real-time systems running on high- performance heterogeneous platforms, b) develop new reinforcement learning architectures for CPS, c) design architectures for sandboxing controllers in CPS, and d) develop synthetic training paradigms for 6D pose recognition and policy learning in robotic manipulation.Members of the chair were involved in the peer review process of several international con- ferences/journals in real-time embedded systems and CPS, including RTSS 2023, RTAS 2024, ECRTS 2023, DAC 2024, DATE 2024, AAAI 2023, IROS 2023, ICRA 2023, ICCPS 2023, IEEE GLOBECOM 2023, ACC 2023, CDC 2023, ECC 2023, HSCC 2023, ICAR 2023, ITSC 2023, as well as Journal of Real-Time Systems, ACM Transaction on Embedded Computing Systems, IEEE Transactions on Automatic Control, IEEE Transactions on Systems, Man and Cybernetics: Systems, IEEE Transactions on Mobile Computing, IEEE Transactions on Wireless Communica- tions, IEEE Transactions on Intelligent车辆,IEEE机器人和自动化信,IEEE嵌入式系统字母,IEEE控制系统信件,国际数字地球杂志,IEEE访问和智能计算。
[1] Fan,Thakker,Bartlett,Miled,Kim,Theodorou,Agha-Mohammadi,“自动杂种地面/未知环境中的空中移动性”,IROS 2019。[2] Lew,Emmei,Fan,Bartlett,Santamaria-Navarro,Thakker,Agha-Mohammadi,“接触惯性探测:碰撞是您的朋友,” ISRR2019。[3] Santamaria-Navarro,Thakker,Fan,Morrell,Agha-Mohammadi,“迈向无人机的弹性自动导航”,ISRR2019。[4] Terry,Lei,Morrell,Daftry,Agha-Mohammadi,“感知衰落的地下环境中的伪影检测和定位”,ICRA 2020(提交)。[5] Ebadi,Change,Palieri,Stephens,Hatteland,Heiden,Thakur,Morrell,Carlone,Carlone,Agha-Mohammadi。“灯:大规模的自主映射和定位,用于探索感知衰落的地下环境,” ICRA,2020年(提交)。[6] Jung,Lee,Shim,Agha-Mohammadi,“ DARPA地下挑战的自动空中勘探无人机”,ICRA 2020年(提交)。[7] Kanellakis,Karvelis,Mansouri,Agha-Mohammadi,Nikolakopoulos,“在地下隧道导航中使用多旋转器使用多旋翼的自主空中搜寻”,ICRA 2020(提交)。[8] Kramer,Stahoviak,Santamaria-Navarro,Agha-Mohammadi,Heckman,“视觉上降解环境的雷达惯性自我效率估计”,ICRA 2020(提交)。[9] Sasaki,Otsu,Thakker,Haesaert,Agha-Mohammadi,“在哪里映射?迭代的漫游者 - 弯曲器路径计划火星探索,” ICRA 2020(提交)。[10] Fan,Nguyen,Thakker,Alatur,Agha-Mohammadi,Theodorou。“基于贝叶斯学习的自适应控制对安全关键系统的自适应控制”,ICRA 2020(提交)。[11] Kanellakis,Karvelis,Mansouri,Agha-Mohammadi,Nikolakopoulos,“在地下环境中进行自主空中航行的视觉驱动的NMPC,IFAC(提交),[12],[12] [12]长期耐药性活动的概念混合空中/地面车辆。[13] Otsu,Tepsuporn,Thakker,Vaquero,Edlund,Walsh,Walf,Wolf,Agha-Mohammadi,“与机器人团队对贫困环境的自动探索和映射”[14] Tagliabue, Schneider, Pavone, Agha-mohammadi, “ The Shapeshifter: a Multi-Agent, Multi-Modal Robotic Platform for the Exploration of Titan, " IEEE Aerospace Conf., 2020 [15] Agha-mohammadi, Hofgartner, Vyshnav, Mendez, Tikhomirov, Chavez, Lunine, Nesnas, “探索冰冷的世界:通过自动协作混合机器人访问泰坦的地下空隙,” IPPW,2018。[16] Heiden,牧师,Vyshnav,Agha-Mohammadi,“通过置信度丰富的3D网格映射:应用于物理机器人的异质传感器融合:Iser,2018年。[17] SABET,AGHA-MOHAMMADI,TAGLIABUE,ELLIOTT,NIKRAVESH,“滚筒式:能源吸引能量的混合杂种空中地形迁移率对极端地形”,IEEE Aerospace Conf。,2019年。[18] Agha-Mohammadi,Heiden,Hausman,Sukhatme,“信心丰富的3D网格映射” IJRR,2019年。[19] Kim,Thakker,Agha-Mohammadi,“不确定性下的风险感知计划的双向价值学习”,IEEE机器人和自动化信,2019年。[21] Parcheta,Nash,Parness,Mitchell,Pavlov,“狭窄的垂直洞穴:映射火山裂缝几何形状”,IPCC,2015年。pp。[20] Agha-Mohammadi,Agarwal,Kim,Chakravorty和Amato,“ Slap:通过在信仰空间中启用动态重建的物理移动机器人的同时本地化和计划,”机器人技术的IEEE Transactions,2018。[22]波士顿,“洞穴和喀斯特科学的百科全书”。Fitzroy-Dearborn Publishers,Ltd。,英国伦敦。355-358,2004。
