ISECG 的成立是为了响应 2007 年 5 月发布的“全球探索战略:协调框架”(GES)。这份 GES 框架文件阐明了人类和机器人协调太空探索的共同愿景,重点关注人类未来可能生活和工作的太阳系目的地。ISECG 的目的是提供一个论坛来讨论太空探索的兴趣、目标和计划,并支持促进全社会对太空探索活动的兴趣和参与。ISECG 的工作成果是文件、论文、调查结果和建议,这些对于为各个机构的决策提供信息至关重要。自成立以来,ISECG 的成员已从最初的 14 个国际空间组织发展到现在的 27 个,表明太空探索在全球的重要性日益增加。
在2020年夏天,ISECG发布了“ 2020年8月的全球勘探路线图”。该补充剂提供了最初在2018年全球勘探路线图(GER)上发表的Lunar Surface探索场景的其他细节。从那以后,全球对太空探索的兴趣进一步增长,ISECG成员资格已于2020年底扩展到26个机构。这些太空机构中有许多已重新专注于对月球的探索。该补充剂在更新的月球表面探索方案中捕获了月球勘探计划中的最新发展。它描述了一个探索活动和建筑要素,可以逐步解决一组十二个ISECG LUNAR Surface Exploration目标,同时利用ISECG目标并在2018年GER中概述的可持续原则。最终,该补充剂描述了新兴的国家和商业能力,以实现“月球倡议”,这些倡议将为火星和进一步的月球活动做准备。
在2006年,一组14个国际太空机构开始了一系列关于全球太空探索利益的讨论。共同采取了有远见的步骤,阐明了一个和平机器人和人类太空探索的计划,重点是人类可能有一天生活和工作的太阳系内的目的地。在2007年,愿景被正式化为《 ISECG宪章》,在ISECG上15年在2022年11月庆祝其周年纪念日。为了支持这个重要的里程碑,创建了15周年的LSECG徽标,并由ISECG的成员太空机构和ISS的宇航员制作了生日视频。完成了第二个更长的版本视频,并且随着ISECG工作组联合主席的包括,太阳系探索月球及以后的工作,远见和协作精神在视频中被捕获。
ISECG:国际太空探索协调组GER:全球勘探路线图专家:勘探准备研究和技术EAC:欧洲宇航员中心ECSAT:欧洲航天和电信中心ISECG:国际太空探索协调组GER:全球勘探路线图专家:勘探准备研究和技术EAC:欧洲宇航员中心ECSAT:欧洲航天和电信中心
继全球探索路线图 (GER) 的“2020 年 8 月补充”之后,ISECG 为月球表面探索场景制定了相应的月球表面作战概念 (CONOPS)。CONOPS 的开发重点是月球表面探索场景的第 1 阶段和第 2A 阶段,因为 ISECG 强调近期任务和活动以了解潜在的合作机会,同时继续研究未来的道路。CONOPS 根据一套基本规则和假设推动了对各种表面元素的作战权衡和假设的讨论。CONOPS 工作还评估了代表性应急场景。CONOPS 工作为每个表面元素提供了所需的功能分配以及调查结果摘要。有关这项工作的更多详细信息,请参阅 IAC-21-A5-1-5“月球表面,全球探索路线图月球表面探索场景的作战概念”。
作为全球探索路线图 (GER) 的一部分,国际空间探索协调小组 (ISECG) 组建了两个技术差距评估小组,以评估迄今为止尚未在国际层面开展的学科领域。参与机构包括 ASI、CNES、DLR、ESA、JAXA 和 NASA。因此,ISECG 技术工作组 (TWG) 根据 GER 技术发展图 (GTDM) 中反映的关键技术需求推荐了两个学科领域:防尘和液氧/甲烷推进。液氧/甲烷推进系统通过使用现场推进剂生产显著减少火星上升阶段的着陆质量,从而改善生命支持、动力和推进的通用流体,从而实现多样化冗余,消除腐蚀性和有毒推进剂,从而改善表面操作和可重复使用性,并提高推进系统的性能,从而为未来人类火星任务提供支持。国际团队的目标和目的是确定必须弥补哪些技术差距,才能将液氧/甲烷用于地月、月球和火星任务中的载人探索任务。重点放在近期月球着陆器应用上,并可扩展到火星。每个机构都提供了迄今为止大量液氧/甲烷推进系统开发的状态,以及他们对尚存技术差距的意见。然后讨论这些差距,这些差距现在是合作的机会。
国际合作 - 阿联酋与ESA,CNSA,UKSA,澳大利亚航天局,CSA,JAXA,JAXA,Roscosmos,乌克兰,ASI,ASI,DLR,DLR,瑞典国家航天局,CNES,CNES,ISRO,ISRO,ISRO,BAHRAIN NAINDAR SPACION ANDICAN,BAHRAIN NAINTACH AGENAM,ALGERIAN SPACESMOS,KAZCOSMOSSA,k.卢森堡经济部,韩国科学部。It is also engaged in the International Charter Space and Major Disasters (ICSMD), IAF, Space Frequency Coordination Group, COPUOS, COSPAR, Consultative Committee for Space Debris Systems (CCSDS), Arab Space Cooperation Group, ISECG, International Committee on Global Navigation Satellite Systems (ICG), Interagency Operations Advisory Group, Group on EO, Committee on EO Satellites, SpaceOps, and International Society for Photogrammetry和遥感(ISPRS)。
维度 1:持续月球探索 2019 年 8 月,时任美国副总统迈克·彭斯指示 NASA 向国家空间委员会提交一份“可持续月球表面探索和发展计划,包括人类初步探索火星所需的技术和能力”。由此产生的《阿尔特弥斯计划:持续月球探索与发展》3 描述了建立持续月球存在的高级理念,在月球轨道和月球表面开发和部署越来越强大和复杂的能力。这些能力包括机器人和载人系统。由 26 个航天机构组成的论坛国际空间探索协调小组 (ISECG) 已确定 31 项技术“对未来的探索任务至关重要”。4
执行摘要2019年,国际太空勘探协调小组(ISECG)的技术工作组(TWG)建立了一个差距评估团队(GAT),以实地资源利用率(ISRU)为主题。ISRU GAT评估旨在检查和确定技术需求,并告知ISECG有关必须解决的技术差距,以实施预见的任务。最终,该计划打算在考虑投资是特定的勘探技术时,在确定潜在的协作机会的同时,在考虑投资是特定的探索技术时,在专家之间进行国际对话。以下各节是完整报告的主要部分的执行摘要。战略知识差距定义,以帮助确保人类探索月球的计划将取得成功,并进行了评估以确定人类勘探技术和能力的状态。发现知识和/或能力不足的地方,创建了需求的说明。从这项工作中,以三个广泛的探索主题创建了被称为战略知识差距(SKG)的列表,其中ISRU与第一个和第三个主题有关。从那时起,SKG进行了审查,并用于指导和优先考虑人类探索月球的开发和飞行活动。从这项工作中创建了一个表,该表确定了SKG对4个主要资源/功能领域和ISRU操作中的每个操作,如何/何处关闭SKG的潜在影响,以及在三相人类月球探索体系中,SKG需要关闭SKG。在这项工作开始时,对ISRU技术,能力和运营的最新批准的SKG列表(极性水资源/功能领域)(极性水,太阳能风力波动,氧气/金属来自Regolith,以及建筑和制造)以及任何ISRU MACTO的整体运作。该表的目的(表3)是允许决策者和开发人员优先级和计划关闭这些SKG,以实现所需的ISRU功能和产品。ISRU功能分解和流程图识别,提取,处理和使用空间资源将需要广泛的技术学科领域的技术,系统和能力开发。从资源识别到产品交付的端到端过程还需要大量的顺序和并行步骤。为了确保从“勘探到产品”的整个端到端序列中正确识别和解决所有技术和过程,ISRU GAP研究团队创建了两组表/图形。第一组表研究了研究中检查的三个主要ISRU功能的范围和分解:1)原位推进剂和易于消耗的生产,2)Initu构造,以及3)与ISRU衍生的原料中的空间制造。对于这三个主要的ISRU功能中的每一个,成功实施功能所需的主要功能得到了定义,以及与这些主要功能相关的亚功能(如图3、4和5所示)。这些表使决策者和开发人员能够定义,解决和跟踪过去和正在进行的活动以成功实施ISRU,但这些表并未提供有关这些功能和子功能中每个功能和子功能中的每一个可能如何影响或受到ISRU其他领域的影响。为了提供这种见解,创建了一个集成的ISRU功能流程图(图6)。该数字允许决策者和开发人员了解端到端流程中仍然存在差距或缺陷的位置,并可以更好地理解伙伴关系和招标的接口。ISRU在人类探索原地资源利用率(ISRU)中涉及任何要利用并利用本地或原地资源来创建用于机器人的产品和服务的硬件或操作,并提供人类勘探和持续存在,而不是从地球上带来。ISRU的直接目标是大大减少人类从月球和火星返回并返回的直接支出,以建立长期船员的自给自足,用于扩大科学和勘探工作,并实现空间的商业化。要将ISRU融合到任务体系结构中的最大好处,需要设计其他系统围绕ISRU衍生产品的可用性和使用。因此,ISRU是一种破坏性的能力,需要
本十年可能见证人类在月球上可持续生存的开始;下一个十年可能是人类在火星上迈出的第一步。这至少是主要太空机构(ISECG,2018)的目标,而私营公司(最著名的是 SpaceX)也提出了相关目标(Musk,2017)。当然,人类需要适宜居住的环境和丰富的消耗品才能生存:食物、水、氧气,可能还有药物,等等。随着任务越来越长、越来越遥远,从地球提供所有这些消耗品变得不现实:发射成本、旅行时间和失败风险是关键障碍。生物再生生命支持系统 (BLSS) 是解决这一限制的一种非常有前途的方法,如果它们可以与原位资源利用 (ISRU) 相结合,则更是如此。在本研究主题中,Berliner 等人对此进行了说明,他们主张在火星上建立一个用于资源生产和回收的综合生物制造工厂。他们还介绍了相关的挑战、目标和示例系统。尽管过去几十年进行了大量研究,但没有一个 BLSS 项目达到足够的成熟度,无法显著提高月球或火星上哪怕是小型基地的自主性。长期运行的 BLSS 项目(例如 ESA 的 MELiSSA 项目;Lasseur 等人,2010 年;Walker 和 Granjou,2017 年)的经验表明,它们的开发是一个长期过程。因此,目前需要做出务实的努力,以便 BLSS 做好准备,以便月球和火星任务能够从中受益。本研究课题旨在促进此类努力。月球和火星的 BLSS 很可能包括植物,因为它们是食物生产所必需的。此外,它们还具有空气净化和水净化功能(例如 Wheeler,2010 年),并可用于其他功能,例如药品生产(McNulty 等人,2021 年)。因此,本研究的九项贡献