总理,总理秘书处,伊斯兰堡伊斯兰堡总理秘书,伊斯兰堡内阁秘书,伊斯兰堡秘书,内阁秘书,伊斯兰堡总理,伊斯兰堡总理(科技),DTE Gen,ISI ISI伊斯兰巴巴德(ISI),伊斯兰教堂,ISLAMABAD
[1] M. Dimian、L. Chassagne、P. Andrei、P. Li,“用于车辆安全和驾驶辅助的智能技术”,先进交通杂志,2019 年卷,文章 ID:1980363,编辑,(2019),ISI 影响因子 1.983 [2] M. Dimian、A. Căilean、A. Done. S. Vlad、P. Andrei,“用于汽车应用的带有自适应滞后电路的可见光通信传感器”,Physica B – Condensed Matter,第 549 栏,第 31-34 页 (2018),ISI 影响因子 1.874 [3] A. Cailean、M. Dimian,“当前车辆应用中可见光通信使用的挑战:调查”,IEEE 通信调查和教程,第 19 (4) 卷,第 19 (4) 页。 2681-2703 (2017),ISI 影响因子 22.973 [4] A. Cailean、M. Dimian,“IEEE 802.15.7 标准对汽车应用中可见光通信使用的影响”,IEEE Communications Magazine,第 55 卷 (4),第 169-175 页 (2017),ISI 影响因子:10.435 [5] A. Cailean、M. Dimian,“面向汽车应用的环境自适应可见光通信接收器:综述”,IEEE Sensors Journal,第 16 卷,第 9 期,第 2803-2811 页,2016 年,ISI 影响因子:1.762。 [6] A. Cailean、M. Dimian、L. Chassagne、B. Cagneau 和 V. Popa,“用于汽车应用中多通道可见光通信的新型 DSP 接收器架构”,IEEE Sensors Journal,第 16 卷,第 10 期,第 3597-3602 页,2016 年,ISI 影响因子:1.762 [7] I. Gudyma、V. Ivashko 和 M. Dimian,“压力对自旋交叉固体材料磁滞的影响”,Physica B – Condensed Matter,第 16 卷,第 10 期,第 3597-3602 页,2016 年,ISI 影响因子:1.762 486,第 40-43 页,2016 年。ISI 影响因子:1.319 [8] I. Gudyma、A. Maksymov、M. Dimian,“自旋交叉噪声驱动系统的滞后行为”,Physica B – Condensed Matter,第 486 卷,第 44-47 页,2016 年。ISI 影响因子:1.319 [9] A. Cailean、B. Cagneau;L. Chassagne;M. Dimian;V. Popa,“用于汽车应用中可见光通信的新型接收传感器”,IEEE Sensors Journal,第 15 卷,第 8 期,第 4632-4639 页,2015 年,ISI 影响因子:1.762。[10] M. Dimian、Andrei, P.;Mehta, M.; Idubor,OA,“磁性多层材料的热弛豫
图1跨国应用的开发,2005 - 2018年资料来源:基于EPO PATSTAT的Fraunhofer ISI分析。注意:CN =中国,de =德国。我们感谢Fraunhofer ISI与我们共享这些数据。4,800
1 https://eur-lex.europa.eu/legal-content/de/tml/? https://shop.vds.de/download/vds-2234en 4 https://vds.de/service/service/gerlinien 5 https://www.fmglobal.com/research-earchearch-and-research-and-resources/fm-global-dataeets 6 https://www.faceaurisque.com/2023/01/17/incendie-un-un-un-un-entrepot-de-batteries-lithium-lithium-de-de-de--s-se-maritime/7传单3103:https://shop.vds.vds.vds.de/mwg-internern/ternern/ DE5FS23HU73DS/进度? https://www.isi.fraunhofer.de/content/dam/isi/isi/dokumente/cct/2021/vdma_kurzstudie_batterierecycycling.pdf
所有文章由生物医学研究与环境科学杂志发表,并由Google Scholar,Crossref,Sminantic Scholar,grad Kudos,Scilit,Harvard Library Hollis,Harvard Hollis,研究门,基础搜索,互联网档案,华盛顿州立大学图书馆,Dimensions,Dimens,Dimens,Zenodo,OpenAire,Indexcopopernicus,ISI,ISI,ISI IMI,ISIDEDIMAT,ISIDED ISID ISID ISID ISID ISIVEST, Cabot大学图书馆,麦吉尔大学图书馆,NUS图书馆,VU图书馆,DET KGL Bibliotek,Publons,SJSU图书馆,UW图书馆搜索,Fit Library,Lub搜索图书馆,De Paris大学,DTU图书馆和学术Microsoft。
2021年国际统计研究所(ISI)当选成员。ISI对“在职业生涯中建立并为统计专业做出重要贡献的个人”。 2021诗人与Quant:世界上最好的40 MBA 40 MBA教授。 诗人与Quant年度清单认可40岁以下的MBA教育中的40名最佳商学院教授。 2020 Facebook教师研究奖。 奖励:私人深度学习,以及在线广告的应用。ISI对“在职业生涯中建立并为统计专业做出重要贡献的个人”。2021诗人与Quant:世界上最好的40 MBA 40 MBA教授。诗人与Quant年度清单认可40岁以下的MBA教育中的40名最佳商学院教授。2020 Facebook教师研究奖。奖励:私人深度学习,以及在线广告的应用。
目的:电场方向对于优化经颅磁刺激 (TMS) 中的神经元兴奋至关重要。然而,由于在几毫秒内操纵 TMS 诱导的刺激方向存在技术挑战,刺激方向对短间隔皮层内抑制 (SICI) 和皮层内促进 (ICF) 的影响尚不清楚。我们旨在评估 SICI 和 ICF 范式的方向敏感性,并确定运动诱发电位 (MEP) 促进和抑制的最佳方向。方法:我们对 12 名健康受试者施加成对脉冲多通道 TMS,在四个刺激间隔 (ISI) 内以相同、相反和垂直的方向施加条件和测试刺激,以产生不应期、SICI 和 ICF。结果:MEP 调制受条件和测试刺激方向的影响,当两个脉冲在同一方向时最强。 2.5 毫秒和 6.0 毫秒 ISI 的 MEP 调制对方向变化的敏感性高于 0.5 毫秒和 8.0 毫秒 ISI。结论:SICI 和 ICF 方向敏感性表现出对条件刺激方向的复杂依赖性,这可能通过抑制性和兴奋性神经元群的解剖和形态排列来解释。意义:介导 SICI 和 ICF 的不同机制对特定 ISI 的刺激方向敏感,描述了一种结构 - 功能关系,可在皮质层面最大化每种效果。
(a)在Maestro MEA™系统上将Brainphys™神经元介质(目录#05790)培养的HPSC衍生的神经元(目录#05790)铺平。(b)神经元在15周内发挥电活性,从第8周增加到第16周的平均点火率逐渐增加。(c)栅格图在不同时间点显示了64个电极上神经元的发射模式。每条黑线代表一个检测到的尖峰。每条蓝线代表一个单个通道突发,收集至少5个尖峰,每个峰值由ISI≤100ms分隔。每个粉红色框都表示网络爆发,这是整个井中至少25%参与电极的至少10个尖峰的集合,每个电极的ISI≤100ms。在Brainphys™神经元培养基中培养的神经元表现出电活动,如随着时间的推移的增加所示。此外,网络爆发频率也增加了,这表明随着神经元的成熟,神经元的发射逐渐组织成同步网络爆发。isi =跨度间隔