1。Pires DP,Melo LDR,Azeredo J.了解生物膜群落中复杂的噬菌体 - 宿主相互作用。病毒学年度审查。2021; 8:73–94。doi:10.1146/annurev-病毒学-091919-074222 2。Bond MC,Vidakovic L,Singh PK,Drescher K,Nadell CD。基质捕获的病毒可以通过定植细胞来防止细菌生物膜侵袭。Shou W,Storz G,Shou W,编辑。Elife。 2021; 10:e65355。 doi:10.7554/elife.65355 3。 BrüssowH,Hendrix RW。 噬菌体基因组学:小是美丽的。 单元格。 2002; 108:13–16。 doi:10.1016/s0092-8674(01)00637-7 4。 lwoff A.溶因子。 Bacteriol Rev. 1953; 17:269–337。 5。 Mann NH,Cook A,Millard A,Bailey S,Clokie M.病毒中的细菌光合作用基因。 自然。 2003; 424:741–741。 doi:10.1038/424741a 6。 Frank JA,Lorimer D,Youle M,Witte P,Craig T,Abendroth J等。 氰化物编码的肽畸形酶的结构和功能。 isme J. 2013; 7:1150–1160。 doi:10.1038/ismej.2013.4 7。 Allison GE,Verma nk。 shigella flexneri中的血清型转换噬菌体和O-抗原修饰。 微生物学的趋势。 2000; 8:17–23。 doi:10.1016/s0966- 842x(99)01646-7 8。 Shahed-Al-Mahmud MD,Roy R,Sugiokto FG,Islam MDN,Lin M-D,Lin L-C等。 噬菌体φab6-传播解聚酶打击鲍曼尼杆菌的生物膜形成和感染。 抗生素(巴塞尔)。Elife。2021; 10:e65355。doi:10.7554/elife.65355 3。BrüssowH,Hendrix RW。噬菌体基因组学:小是美丽的。单元格。2002; 108:13–16。 doi:10.1016/s0092-8674(01)00637-7 4。 lwoff A.溶因子。 Bacteriol Rev. 1953; 17:269–337。 5。 Mann NH,Cook A,Millard A,Bailey S,Clokie M.病毒中的细菌光合作用基因。 自然。 2003; 424:741–741。 doi:10.1038/424741a 6。 Frank JA,Lorimer D,Youle M,Witte P,Craig T,Abendroth J等。 氰化物编码的肽畸形酶的结构和功能。 isme J. 2013; 7:1150–1160。 doi:10.1038/ismej.2013.4 7。 Allison GE,Verma nk。 shigella flexneri中的血清型转换噬菌体和O-抗原修饰。 微生物学的趋势。 2000; 8:17–23。 doi:10.1016/s0966- 842x(99)01646-7 8。 Shahed-Al-Mahmud MD,Roy R,Sugiokto FG,Islam MDN,Lin M-D,Lin L-C等。 噬菌体φab6-传播解聚酶打击鲍曼尼杆菌的生物膜形成和感染。 抗生素(巴塞尔)。2002; 108:13–16。doi:10.1016/s0092-8674(01)00637-7 4。lwoff A.溶因子。Bacteriol Rev.1953; 17:269–337。5。Mann NH,Cook A,Millard A,Bailey S,Clokie M.病毒中的细菌光合作用基因。自然。2003; 424:741–741。 doi:10.1038/424741a 6。 Frank JA,Lorimer D,Youle M,Witte P,Craig T,Abendroth J等。 氰化物编码的肽畸形酶的结构和功能。 isme J. 2013; 7:1150–1160。 doi:10.1038/ismej.2013.4 7。 Allison GE,Verma nk。 shigella flexneri中的血清型转换噬菌体和O-抗原修饰。 微生物学的趋势。 2000; 8:17–23。 doi:10.1016/s0966- 842x(99)01646-7 8。 Shahed-Al-Mahmud MD,Roy R,Sugiokto FG,Islam MDN,Lin M-D,Lin L-C等。 噬菌体φab6-传播解聚酶打击鲍曼尼杆菌的生物膜形成和感染。 抗生素(巴塞尔)。2003; 424:741–741。doi:10.1038/424741a 6。Frank JA,Lorimer D,Youle M,Witte P,Craig T,Abendroth J等。氰化物编码的肽畸形酶的结构和功能。isme J.2013; 7:1150–1160。 doi:10.1038/ismej.2013.4 7。 Allison GE,Verma nk。 shigella flexneri中的血清型转换噬菌体和O-抗原修饰。 微生物学的趋势。 2000; 8:17–23。 doi:10.1016/s0966- 842x(99)01646-7 8。 Shahed-Al-Mahmud MD,Roy R,Sugiokto FG,Islam MDN,Lin M-D,Lin L-C等。 噬菌体φab6-传播解聚酶打击鲍曼尼杆菌的生物膜形成和感染。 抗生素(巴塞尔)。2013; 7:1150–1160。doi:10.1038/ismej.2013.4 7。Allison GE,Verma nk。shigella flexneri中的血清型转换噬菌体和O-抗原修饰。微生物学的趋势。2000; 8:17–23。doi:10.1016/s0966- 842x(99)01646-7 8。Shahed-Al-Mahmud MD,Roy R,Sugiokto FG,Islam MDN,Lin M-D,Lin L-C等。噬菌体φab6-传播解聚酶打击鲍曼尼杆菌的生物膜形成和感染。抗生素(巴塞尔)。2021; 10:279。doi:10.3390/ant antibiotics10030279 9。Waldor MK,Mekalanos JJ。通过编码霍乱毒素的丝状噬菌体转化。科学。1996; 272:1910–1914。 doi:10.1126/science.272.5270.1910 10。 O'Brien AD,Newland JW,Miller SF,Holmes RK,Smith HW,正式SB。 shiga样毒素 - 从大肠杆菌菌株中转化噬菌体,引起出血性结肠炎或婴儿腹泻。 科学。 1984; 226:694–696。 doi:10.1126/science.6387911 11。 Groman NB。 通过corynephages及其在白喉自然历史中的作用。 J HYG(Lond)。 1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。1996; 272:1910–1914。doi:10.1126/science.272.5270.1910 10。O'Brien AD,Newland JW,Miller SF,Holmes RK,Smith HW,正式SB。 shiga样毒素 - 从大肠杆菌菌株中转化噬菌体,引起出血性结肠炎或婴儿腹泻。 科学。 1984; 226:694–696。 doi:10.1126/science.6387911 11。 Groman NB。 通过corynephages及其在白喉自然历史中的作用。 J HYG(Lond)。 1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。O'Brien AD,Newland JW,Miller SF,Holmes RK,Smith HW,正式SB。shiga样毒素 - 从大肠杆菌菌株中转化噬菌体,引起出血性结肠炎或婴儿腹泻。科学。1984; 226:694–696。 doi:10.1126/science.6387911 11。 Groman NB。 通过corynephages及其在白喉自然历史中的作用。 J HYG(Lond)。 1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。1984; 226:694–696。doi:10.1126/science.6387911 11。Groman NB。 通过corynephages及其在白喉自然历史中的作用。 J HYG(Lond)。 1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。Groman NB。通过corynephages及其在白喉自然历史中的作用。J HYG(Lond)。 1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。J HYG(Lond)。1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。1984; 93:405–417。12。Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。肉毒杆菌C1神经毒素的核苷酸序列。核酸res。1990; 18:4924。
项目描述:人类微生物组从根本上与人类健康和疾病有关。一个方面是,病原体可以隐藏在健康人的微生物中,如果他们得到改变,可能会引起疾病。在这方面的一个主要例子是金黄色葡萄球菌。侵略性病原体在1/3人口的前鼻孔中定居,每年造成与感染相关的死亡> 1.000.000> 1.000.000。金黄色葡萄球菌形成的位移人类微生物组是防止感染的有前途的策略。我们对使金黄色葡萄球菌殖民某些人的个人的原因缺乏核心理解,但已知微生物组的组成很重要。在我们的实验室中,我们拥有代表健康和金黄色葡萄球菌感染的微生物组的广泛应变收集。我们评估无害微生物组成员与鉴定预防病原体定植的益生菌共生的病原体之间相互作用的分子机制。在这个项目中,我们将使用数百种鼻分离株,并使用自动化系统研究它们对病原体生长和生理的影响。将使用转座子突变库以及转录组和代谢组学方法来鉴定与金黄色葡萄球菌促进协作/竞争的遗传特征,然后研究分子和生化水平。最后,使用具有人源化微生物组的无菌动物模型在体内将在体内测试菌株的能力。鼻气质通过限制铁载体的可用性来减少金黄色葡萄球菌的增殖。(2021)。参考文献:1)Zhao,Y.,Bitzer,A.,Power,J.J.,Belikova,D.,Salazar,B.O。T.,Adolf,L。A.,Gerlach,D.L.,Krismer,B。,&Heilbronner,S。(2024)。isme J. https://doi.org/10.1093/ismejo/wrae123 2)Heilbronner,S.,Krismer,B.,Brotz-Oesterhelt,H。,H。,&Peschel,&Peschel,A。细菌素的微生物组作用。nat rev microbiol。https://doi.org/10.1038/s41579-021-00569-W 3)Adolf,L。A.和Heilbronner,S。(2022)。 细菌物种之间的营养相互作用定植人类鼻腔:当前的知识和未来前景。 代谢物,12(6)。 https://doi.org/10.3390/metabo12060489https://doi.org/10.1038/s41579-021-00569-W 3)Adolf,L。A.和Heilbronner,S。(2022)。细菌物种之间的营养相互作用定植人类鼻腔:当前的知识和未来前景。代谢物,12(6)。https://doi.org/10.3390/metabo12060489
Duran K,M Kohlstedt,G Van Erven,Ce Klostermann,AHP America,E Bakx,JJP Baars,A Gorissen,R de Visser,Rp de Vries,C Wittmann,Rnj Comans,Rnj Comans,Tw Kuyper,Tw Kuyper,Ma Kabel。2024。从13 c-林蛋白到13 c-甲纤维:agaricus bisporus使用聚合物木质素作为碳源。科学进步10:EADL3419。Wei W,CC Wong,Z Jia,W Liu,C Liu,F JI,Y Pan,F Wang,G Wang,L Zhao,Esh Chu,X Zhang,Jjy Sung,J Yu。2023。副细胞动物蒸馏剂使用饮食中的菊粉通过其代谢物五核酸抑制NASH。自然微生物学8:1534–1548。li H,X Kang,M Yang,Bd Kasseney,X Zhou,S Liang,X Zhang,J-L Wen,B Yu,N Liu,N Liu,Y Zhao,J Mo,J Mo,Cr Currie,J Ralph,DJ Yelle。2023。分子见解对白蚁肠道中木质植物腐烂的演变。科学进步9 EADG1258。Palmer M,JK Covington,E-M Zhou,Sc Thomas,N Habib,Co Seymour,Dai,D Lai,J Johnston,A Hashimi,J-Y Jiao,J-Y Jiao,Ar Muok,Ar Muok,L Liu,W-D Xian,W-D Xian,X-Y Zhi,X-Y Zhi,M-M Li,M Li,LP LP Silva,LP Silva,BP Bowen,bp bowen toch weie,w louie,w louie,w louie,w louie,w louie,w loue, T Woyke,Tr Northen,X Mayali,W-J Li,BP Hedlund。2023。具有异常特征的嗜热脱氧核糖核能在出乎意料的过去揭示了。ISME期刊17:952–966。Zeng X,X Xing,M Gupta,FC Keber,JG Lopez,Y-CJ Lee,A Roichman,L Wang,MD Neinast,Donia,Donia,Mwühr,C Jang,JD Rabinowitz。2022。肠道细菌营养偏好在体内定量。单元格185:3441–3456。2022。NAD前体循环宿主组织与肠道微生物组之间。细胞代谢34:1947-1959。Chellappa K,MM Reynolds,W Lu,X Zeng,F Hayat,F Hayat,F Hayat,F Hayat,S Mukherjee,S Mukherjee,S Mukherjee,RT Descamps,T Cox,L Ji,L Ji,L Ji,l Ji,s Sm,Sm,Sm Sm,Sm,Sm,Sm,Me Thaid,Me Thaid,Me Thaid,Me thaid,Ja Rabintz,Ja Rabintz,Ja Baur。
Área Temática: Biociencias y biotecnología Nombre: TOLL RIERA, MACARENA Referencia: RYC2022-036791-I Correo Electrónico: mtollriera@gmail.com Título: Evolutionary adaptations, from metazoans to bacteria Resumen de la Memoria: My research is focused on the study of进化适应,具体来说,是其起源和进化的分子机制。进化适应有助于在给定环境中生存或繁殖,并且了解它们的分子基础是进化生物学的基本问题,这对了解细菌对抗生素的抗性以及生物体对气候变化的反应具有意义。在我在Albà教授(Universitat Pompeu Fabra)的博士学位期间,我使用了比较基因组方法来研究灵长类动物中新基因的起源机制(Toll-Riera等,Mol Biol Evol Evol 2009)以及蛋白质随时间的发展(Toll-Riera等,Mol-Riera et al,Mol-Biol Evol evol 2012; Evol Biol 2013)。我的博士学位包括在Plotkin教授的小组(宾夕法尼亚大学)的短暂住宿。在我的博士后I中,我从计算生物学转变为实验进化的实验技术,微生物学和测序数据分析中的技能。我在麦克林教授(牛津大学)的小组中进行了第一个博士后,在那里我通过实验室进化和后期测序的铜绿假单胞菌的致病细菌中进化创新的基因组基础(Toll-Riera等,Toll-Riera et al,Polos Genet 2016)。我在瓦格纳教授的小组(苏黎世大学)做了第二个博士后。此外,我还参与了多次合作,以了解质粒在P. euguginosa(San Millan*,Toll-Riera* et al,Isme J 2018; San Millan*,Toll-Riera* et al,Nat Commun,2015; San Millan,Peña-Miller*,Peña-Miller*,Toll-Riera* et a a Ratiug Riera* et ant Community for Nat ant Community for Nats Community for for a P.抗生素(Qi,Toll-Riera等,Proc Biol Sci 2016; Gifford,Toll-Riera,MacLean Evolution 2016)。在那里,我使用计算方法继续研究了铜绿假单胞菌的进化创新,以了解突变鲁棒性在促进创新中的作用(Tollriera等,PLOS Genet 2016)。2016年5月,我通过Ambizione Grant(瑞士国家科学基金会,583,690€)建立了自己的初级团体领袖。自2019年11月以来,我领导了Eth Zurich主持的进化微生物学集团。该小组目前由两名博士学位学生,一名博士后研究员和一名大师旋转学生组成,并通过Prima Grant(瑞士国家科学基金会,1,445,870€)和ETH Research Grant(229,878€)资助。我们研究了促进适应环境变化以及限制适应的分子机制。我们使用跨学科和综合方法,并结合了实验室进化,计算方法,高吞吐量测序和蛋白质组学。获得Ramóny Cajal奖学金将使我能够在西班牙建立我的研究小组,并继续使用实验,计算和“ OMICS”方法以及模型以及非模型细菌的研究计划,重点介绍了研究计划。我的目标是研究:1)这是适应高温的限制,2)染色体可塑性作为快速适应环境变化的机制,以及3)细菌冷适应的基因组学。
1 Smolker, Rachel、Anne Petermann 和 Rachel Kijewski。2018 年。森林正处于危机之中,但生物技术并不是解决办法。The Hill。3 月 28 日。https://thehill.com/opinion/energy-environment/380363-the-forests-are-in-crisis-but-biotechnology-is-not-the-solution/ 2 Wilson, AK、JR Latham 和 RA Steinbrecher。2006 年。转基因植物中的转化诱导突变:分析和生物安全影响。生物技术和基因工程评论 23:209-237;Eckerstorfer MF、M. Dolezel、A. Heissenberger、M. Miklau、W. Reichenbecher、RA Steinbrecher 和 F. Waßmann。2019 年。欧盟对通过基因组编辑和其他新基因改造技术 (nGM) 开发的植物的生物安全考虑因素的看法。生物工程与生物技术前沿 7: 31;Tuladhar, R.、Yeu, Y.、Tyler Piazza, J. 等人,2019 年。基于 CRISPR-Cas9 的诱变经常引起靶向 mRNA 错误调节。自然通讯 10, 4056.;Li, J. 等人,2019 年。全基因组测序揭示 CRISPR/Cas9 编辑棉花植物中罕见的脱靶突变和大量固有遗传和/或体细胞克隆变异。植物生物技术杂志 17(5): 858–868;Wang, X.、M. Tu、Y. Wang 等人,2021 年。全基因组测序揭示 CRISPR/Cas9 编辑葡萄树中罕见的脱靶突变。园艺研究 8: 114。3 有关综述,请参阅 Kawall, K.、J. Cotter 和 C. Then。 2020. 扩大欧盟对农业基因组编辑技术的转基因风险评估。欧洲环境科学 32: 106。4 Commoner, Barry。2002. 揭开 DNA 神话:基因工程的虚假基础。哈珀斯杂志。2 月 1 日。https://grain.org/article/entries/375-unravelling-the- dna-myth 5 Wilson, A. 2021. 基因编辑作物和其他转基因作物会破坏可持续的粮食系统吗?Amir Kassam 和 Laila Kassam (eds.)。重新思考食品和农业。Woodhead Publishing。第 247-284 页。6 Benevenuto RF 等人。2017. 通过蛋白质组学和代谢组学分析确定转基因玉米对非生物胁迫的分子反应。PLoS ONE 12(2): e0173069。 7 Anthony, MA、Crowther, TW、van der Linde, S. 等人,2022 年。欧洲各地林木生长与菌根真菌组成和功能相关。ISME J 16,1327–1336。;Jacott, Catherine N.、Jeremy D. Murray 和 Christopher J. Ridout,2017 年。“丛枝菌根共生的权衡:抗病性、生长反应和作物育种前景”农学,7,第 4 期:75。;Lattuada 等人,2019 年。南里奥格兰德州内菌根与本地果树(桃金娘科)之间的相互作用。植物科学 29(4):1726-1738 8 Nguyen, HT 和 JA Jehle。 2007. 转基因玉米 Mon810 中 Cry1Ab 的季节性和组织特异性表达的定量分析。《植物疾病与保护杂志》114(2): 82-87;Lorch, A. 和 C. Then。2007. 转基因 MON810 玉米植株实际上会产生多少 Bt 毒素?绿色和平组织。https://www.testbiotech。org/sites/default/files/How%20much%20Bt%20toxin%20produced%20in%20 MON810_Greenpeace.pdf 9 Miller, ZD 等人。2019 年。为增加密度而改良的转基因火炬松 (Pinus taeda L.) 的解剖、物理和机械特性。木材和纤维科学 51(2): 1-10。 10 美国国家科学、工程和医学院。2019 年。森林健康和生物技术:可能性和注意事项。华盛顿特区:美国国家科学院出版社,第 94 页。 11 加拿大生物技术行动网络 (2022) 《全球转基因树木发展现状》www.cban.ca/globalstatus2020
Agrell I.Zurökologieder Collembolen。Unteruchungen Im Schwedischen Lappland。OPUSC Entomo Suppl。1941; 3:236。Albert C,NeßhöverC,SchröterM,Wittmer H,Bonn A,Burkhard B等。 朝着德国的国家生态系统评估:一种综合方法的认罪。 Gaia - Ecol Perspect Sci Soc。 2017; 26:27 - 33。 Anthony MA,Bender SF,Van der Heijden MGA。 列举土壤生物多样性。 Proc Natl Acad Sci USA。 2023; 120:e2304663120。 Baas J,Jager T,Kooijman B. 在评估混合物的毒性作用中对DEB理论的回顾。 SCI总环境。 2010; 408:3740 - 5。 Banerjee S,Van der Heijden Mga。 土壤微生物组和一种健康。 nat rev microbiol。 2023; 21:6 - 20。 Bardgett Rd,Van der Putten WH。 地下生物多样性和生态系统功能。 自然。 2014; 515:505 - 11。 Bardgett Rd,Wardle DA。 地上 - 地下链接:生物相互作用,生态系统过程和全球变化。 英国牛津:牛津大学出版社; 2010。 Bartkowski B,Bartke S.农业土壤的利用点:欧洲农民决策的经验研究回顾。 可持续性。 2018; 10:3179。 Bartkowski B,Bartke S,Hagemann N,HansjürgensB,Schröter -SchlaackC。用于德国农业土壤政策的治理破坏框架的应用。 土壤。 2021; 7:495 - 509。 Baum CM,Bartkowski B. 能源Res Soc Sci。Albert C,NeßhöverC,SchröterM,Wittmer H,Bonn A,Burkhard B等。朝着德国的国家生态系统评估:一种综合方法的认罪。Gaia - Ecol Perspect Sci Soc。2017; 26:27 - 33。Anthony MA,Bender SF,Van der Heijden MGA。列举土壤生物多样性。Proc Natl Acad Sci USA。2023; 120:e2304663120。Baas J,Jager T,Kooijman B.在评估混合物的毒性作用中对DEB理论的回顾。SCI总环境。 2010; 408:3740 - 5。 Banerjee S,Van der Heijden Mga。 土壤微生物组和一种健康。 nat rev microbiol。 2023; 21:6 - 20。 Bardgett Rd,Van der Putten WH。 地下生物多样性和生态系统功能。 自然。 2014; 515:505 - 11。 Bardgett Rd,Wardle DA。 地上 - 地下链接:生物相互作用,生态系统过程和全球变化。 英国牛津:牛津大学出版社; 2010。 Bartkowski B,Bartke S.农业土壤的利用点:欧洲农民决策的经验研究回顾。 可持续性。 2018; 10:3179。 Bartkowski B,Bartke S,Hagemann N,HansjürgensB,Schröter -SchlaackC。用于德国农业土壤政策的治理破坏框架的应用。 土壤。 2021; 7:495 - 509。 Baum CM,Bartkowski B. 能源Res Soc Sci。SCI总环境。2010; 408:3740 - 5。Banerjee S,Van der Heijden Mga。土壤微生物组和一种健康。nat rev microbiol。2023; 21:6 - 20。Bardgett Rd,Van der Putten WH。地下生物多样性和生态系统功能。自然。2014; 515:505 - 11。Bardgett Rd,Wardle DA。地上 - 地下链接:生物相互作用,生态系统过程和全球变化。英国牛津:牛津大学出版社; 2010。 Bartkowski B,Bartke S.农业土壤的利用点:欧洲农民决策的经验研究回顾。 可持续性。 2018; 10:3179。 Bartkowski B,Bartke S,Hagemann N,HansjürgensB,Schröter -SchlaackC。用于德国农业土壤政策的治理破坏框架的应用。 土壤。 2021; 7:495 - 509。 Baum CM,Bartkowski B. 能源Res Soc Sci。英国牛津:牛津大学出版社; 2010。Bartkowski B,Bartke S.农业土壤的利用点:欧洲农民决策的经验研究回顾。 可持续性。 2018; 10:3179。 Bartkowski B,Bartke S,Hagemann N,HansjürgensB,Schröter -SchlaackC。用于德国农业土壤政策的治理破坏框架的应用。 土壤。 2021; 7:495 - 509。 Baum CM,Bartkowski B. 能源Res Soc Sci。Bartkowski B,Bartke S.农业土壤的利用点:欧洲农民决策的经验研究回顾。可持续性。2018; 10:3179。Bartkowski B,Bartke S,Hagemann N,HansjürgensB,Schröter -SchlaackC。用于德国农业土壤政策的治理破坏框架的应用。土壤。2021; 7:495 - 509。Baum CM,Bartkowski B.能源Res Soc Sci。这并不是全部关于资金:从欧洲的角度来促进可持续发展研究中的纪律间合作。2020; 70:101723。Beaumelle L,Thouvenot L,Hines J,Jochum M,Eisenhauer N,Phillips HRP。土壤动物动物的多样性和化学压力源:知识差距和路线图的综述,以供未来研究。ecograph。2021; 44:845 - 59。Bender SF,Plantenga F,Neftel A,Jocher M,Oberholzer HR,KöhlLL等。土壤真菌与植物之间的共生关系减少了n 2 o土壤的排放。isme J.2014; 8:1336 - 45。Bethwell C,Burkhard B,Daedlow K,Sattler C,Recking M,ZanderP。迈向农业生态系统中提供生态系统服务的增强指示。 环境评估。 2021; 193:269。 Bradford MA,Jones TH,Bardgett RD,Black Hij,Boag B,Bonkowski M等。 土壤动物群社区组成对模型草原生态系统的影响。 科学。 2002; 298:615 - 8。 Bradford MA,Wood SA,Bardgett RD,Black Hij,Bonkowski M,Eggers T等。 在生态系统过程的响应中不连续,以及对改变土壤社区组成的多功能性。 Proc Natl Acad Sci USA。 2014; 111:14478 - 83。 Brevik EC,Fenton TE,Homburg,J。 A. 美国土壤科学中的历史亮点 - 1970年代的史前。 catena。 2016; 146:111 - 27。 Brevik EC,Sauer TJ。 土壤和人类健康研究的过去,现在和未来。 土壤。 2015; 1:35 - 46。 Appl土壤Ecol。Bethwell C,Burkhard B,Daedlow K,Sattler C,Recking M,ZanderP。迈向农业生态系统中提供生态系统服务的增强指示。环境评估。2021; 193:269。Bradford MA,Jones TH,Bardgett RD,Black Hij,Boag B,Bonkowski M等。 土壤动物群社区组成对模型草原生态系统的影响。 科学。 2002; 298:615 - 8。 Bradford MA,Wood SA,Bardgett RD,Black Hij,Bonkowski M,Eggers T等。 在生态系统过程的响应中不连续,以及对改变土壤社区组成的多功能性。 Proc Natl Acad Sci USA。 2014; 111:14478 - 83。 Brevik EC,Fenton TE,Homburg,J。 A. 美国土壤科学中的历史亮点 - 1970年代的史前。 catena。 2016; 146:111 - 27。 Brevik EC,Sauer TJ。 土壤和人类健康研究的过去,现在和未来。 土壤。 2015; 1:35 - 46。 Appl土壤Ecol。Bradford MA,Jones TH,Bardgett RD,Black Hij,Boag B,Bonkowski M等。土壤动物群社区组成对模型草原生态系统的影响。科学。2002; 298:615 - 8。Bradford MA,Wood SA,Bardgett RD,Black Hij,Bonkowski M,Eggers T等。在生态系统过程的响应中不连续,以及对改变土壤社区组成的多功能性。Proc Natl Acad Sci USA。2014; 111:14478 - 83。Brevik EC,Fenton TE,Homburg,J。A.美国土壤科学中的历史亮点 - 1970年代的史前。catena。2016; 146:111 - 27。Brevik EC,Sauer TJ。土壤和人类健康研究的过去,现在和未来。土壤。2015; 1:35 - 46。Appl土壤Ecol。Burkhardt U,Russell DJ,Decker P,DöhlerM,HöferH,Lesch S等。GBIF-德国的Edaphobase项目 - 一种新的在线土壤 - 动物学数据仓库。2014; 83:3 - 12。