结果和讨论:在总共617个共培养Calli中,21(3.4%)再生芽表现出三种不同的表型:白化,嵌合和浅绿色;与野生型非转化的再生芽相比。在白化芽中,总叶绿素含量大大降低,并且在嵌合芽中显着降低。在六个CAS9基因确认的再生芽中,两种芽表现出由于插入/缺失(Indels)和ACPDS靶点位置和周围的基于替代的突变而引起的白化表型。深度扩增子测序显示两个SGRNA之间的indel频率显着,范围从1.2%到63.4%,以及53.4%的替代频率。ACPDS基因的突变产生了可检测到的白化病表型,因此确定了ACPDS基因的成功编辑。这是第一次在洋葱中成功建立了CRISPR/CAS9介导的基因组编辑方案,而ACPD基因作为一个例子。这项研究将为研究人员提供进一步的洋葱基础研究和应用研究的必要动力。
在水稻培养中,半枯萎和粘性质地的特征分别是优化产量潜力和晶粒质量的关键。Xiangdaowan(XDW)大米以其出色的芳香特性而闻名,由于其高的身材和高淀粉糖含量而面临挑战,导致住宿耐药性不佳和次优烹饪属性。为了解决这些问题,我们采用了CRISPR/CAS9技术来精确地编辑XDW大米中的SD1和WX基因,从而发展具有所需半昏迷和麸质特征的稳定的遗传纯合线。SD1-WX突变型线表现出降低的gibberellin含量,植物高度和淀粉糖含量,同时保持了几乎不会改变发芽率和其他关键的农艺性状。重要的是,我们的研究表明,外源性GA 3的应用通过补偿内源性Gibberellin的缺乏有效地促进了生长。基于此,开发了半昏昏欲睡的精英大米(Oryza sativa L.)线,对大多数农艺性状没有太大影响。此外,比较转录组分析揭示了差异表达的基因(DEG)主要与膜的锚定成分,过氧化氢分解代谢酶分解代谢酶活性,过氧化物酶活性,萜烯合酶活性和寄生虫相关。此外,将二萜类化合物的生物合成催化为gibberellins的生物合成富集并显着下调。这项全面的研究提供了一种有效的方法,可以同时提高水稻植物的身高和质量,为耐药和高质量的水稻品种的发展铺平了道路。
鲶鱼(Clarias sp.)的动物蛋白质含量足够高,可以满足人体的需要。要想培育出鲶鱼,无论在生产力、外观还是尺寸方面,都需要合适的技术,即CRISPR Cas9基因工程技术。压缩规律间隔短回文重复序列 (CRISPR) 是一种利用 Cas9 酶功能的变化来编辑基因组的现代技术。希望CRISPR技术能够在基因工程领域得到更多的认识和发展。编写本文所采用的方法是对 CRISPR Cas9 在水产养殖中使用的鲶鱼 (Clarias sp) 的发展中进行的文献研究。所用方法是对之前进行的几项研究进行文献研究并进行描述性分析。 CRISPR Cas9 技术可应用于转基因鲶鱼 (Clarias sp.),这得到了先前应用于鲑鱼科 (大西洋鲑)、罗非鱼 (Oreochromis niloticus)、斑马鱼 (Danio reiro) 和鲶鱼 (Ictalurus punctatus) 的研究成功的支持。通过CRISPR Cas 9技术形成转基因鲶鱼可以实现的前景包括加速生长发育、增大骨骼肌,从而增加鲶鱼的体重。
请以以下方式引用本文:Girish and Sheltzer,(2020)。一种用于识别癌症遗传依赖性的 CRISPR 竞争检测方法,Bio-protocol 10 (14): e3682。DOI:10.21769/BioProtoc.3682。
许多蛋白质家族由多种高度同源蛋白组成,无论它们是由不同基因编码还是来自相同基因组位置的编码。某些同工型的优势与各种病理状况(例如癌症)有关。研究中蛋白质同工型的检测和相对定量通常是通过免疫印迹,免疫组织化学或免疫荧光来完成的,其中使用针对特定家族成员的同工型特异性表位的抗体。但是,同工型特异性抗体并非总是可用的,因此无法破译同工型特异性蛋白表达模式。在这里,我们描述了多功能11氨基酸标签的插入到感兴趣蛋白质的基因组位置中。此标签是开发的,由Promega(美国威斯康星州Fitchburg)发行。本协议描述了高度同源蛋白的精确蛋白质表达分析,通过hibit标签的表达,当缺失特定抗体时,可以实现蛋白质表达定量。可以通过传统方法(例如蛋白质印迹或免疫荧光)以及在荧光素酶二元报道器系统中分析蛋白质表达,从而可以使用板读取器进行可靠且快速的相对表达定量。
摘要源自细菌的自适应免疫系统,CRISPR已从基本的生物学知识转变为革命性的生物技术工具,适用于许多研究领域,例如医学,工业和农业。CRISPR-CAS9的完整机制于2012年首次发布,各种CRISPR-CAS系统已经通过了临床试验的第一阶段,作为新的基因疗法。巨大的研究导致对CRISPR系统的知识不断增长,该技术似乎有可能极大地影响我们地球上的所有生命。因此,这项文献研究旨在彻底描述CRISPR-CAS系统,并进一步建议使用CRISPR-CAS9工具进行基因编辑的本科实验室运动。在本文中,我们描述了CRISPR-CAS系统的基本技术背景,尤其强调了最受研究的CRISPR-CAS9系统,其开发和应用领域,并突出了其当前的局限性和道德问题。还描述了基因工程的历史和CRISPR系统的发现,以及与其他已建立的基因编辑技术的比较。这项研究得出结论,关于CRISPR的更深入的知识很重要,并且需要,因为该技术适用于许多研究领域。实验室运动不仅会激发灵感,而且还为本科生提供了扩展的理论和实践知识。
pCas-Guide-scramble(SKU GE100003) AAVS1 供体载体(SKU GE100024、GE100035、GE100046、GE100048) 预先设计的 AAVS1 供体对照,具有不同的转基因和耐药标记组合(SKU GE100037、GE100039、GE100026、GE100063、GE100064、GE100065、GE100066、GE100068、GE100069、GE100070、GE100071、GE100072、GE100073) AAVS1 转基因敲入载体试剂盒(puro)(SKU GE100027) AAVS1 转基因敲入载体试剂盒(BSD)(SKU GE100036) AAVS1 转基因敲入载体试剂盒(EF1a-puro)(SKU GE100046) AAVS1 转基因敲入载体试剂盒(EF1a-BSD)(SKU GE100048) AAVS1 Cas9 插入载体试剂盒,Puro(SKU GE100038)和 BSD(SKU GE100040)
1 印度韦洛尔基督教医学院干细胞研究中心(班加罗尔 inStem 的一个单位);2 印度特里凡得琅 Sree Chitra Tirunal 医学科学与技术研究所;3 美国伯克利加州大学伯克利分校创新基因组学研究所;4 美国旧金山格拉德斯通研究所数据科学与生物技术研究所;5 澳大利亚悉尼新南威尔士大学生物技术与生物分子科学学院;6 印度卡纳塔克邦马尼帕尔高等教育学院;7 印度韦洛尔基督教医学院暨医院血液学系;8 日本茨城县理化学研究所生物资源中心细胞工程部;9 日本红十字会中央血液研究所血液服务总部研究与开发部,日本东京;10 印度韦洛尔基督教医学院生物化学系; 11 加州大学洛杉矶分校微生物学、免疫学和分子遗传学系,美国洛杉矶;12 瑞士苏黎世生物系分子健康科学研究所
在整个细胞发育中,DNA可能遭受威胁基因组完整性和细胞存活的损害。最有害的病变之一是双链DNA断裂(DSB),因为它可能导致基因组信息的丢失。DSB可能自然发生在细胞代谢期间,也可能是由外部因素触发的(Deriano; Roth,2013)。无论哪种方式,这些损坏都会通过细胞立即修复,主要是通过两种途径:非同源末端连接(NHEJ)或同源指导修复(HDR)。与通过NHEJ进行修复不同,NHEJ仅将裂解的DNA的末端连接起来(请参阅第2章),HDR途径需要存在相同或非常相似的模板,即完整的序列,以准确地修复病变的DNA(Heyer等人,2010年)。提供用于HDR中使用的模板的可能性代表了通过同源重组(HR)途径进行基因编辑的关键元素,该途径可能被利用为几种新的繁殖技术(NBT)之一。
摘要。大肠杆菌是一种无处不在的肠道,但也是一种机会性病原体,负责严重的肠道和肠外感染。shiga毒素产生的大肠杆菌(STEC)构成了重大的公共卫生威胁,尤其是在儿童中,在儿童中,感染会导致血腥的腹泻并发展为溶血性尿毒症综合征(HUS),这是一种长期并发症的危及生命状况。抗生素在STEC感染中禁忌,因为它们有可能诱导携带志贺毒素(STX)基因的预言,从而触发毒素的产生。在这里,我们提出了一种基于CRISPR的抗菌策略,该策略有选择地靶向并消除O157 STEC临床分离株,同时预防毒素释放。我们设计了一个Cas12核酸酶,以裂解> O157菌株中所有STX变体的99%,从而导致细菌杀死和抑制毒素的产生。为了实现有针对性的输送,我们设计了一个噬菌体衍生的衣壳,以将非复制性DNA有效载荷特异性地转移到大肠杆菌O157上,从而防止其传播。在小鼠STEC定植模型中,我们的治疗候选者EB003使细菌负担减少了3x10 3。在婴儿兔疾病模型中,EB 003缓解了临床症状,消除了STX介导的毒性,并在治疗相关剂量时加速了上皮修复。这些发现证明了基于CRISPR的抗菌药物对治疗STEC感染的潜力,并支持EB003作为针对抗生素性抗生素性细菌病原体的精确治疗。