• ISRU 子规模演示 • 自主性和机器人技术(例如 • 电源阵列、功率传输、 • 挖掘 IM-2 演示(在 CLPS IDIQ 上) • 燃料电池) • 建筑 • 除尘 • 极地资源冰采实验 (PRIME-1) • 诺基亚 4G LTE 通信 • 直观机器 (TP) 可部署裂变氧气提取料斗 (TP) 地面演示表面电力演示
t2如何实现高可靠性/最小维护。p v o1如何在极端环境中操作?s/v p nea p o2如何在低/微重力下进行操作?s p nea p o3如何实现长时间的自主操作?p v o4在长时间持续时间休眠p v o5之后如何生存和操作如何负责任地操作对科学/ env的最小影响。p v I1其他设计用于合并ISRU产品的系统?p v i2如何使用ISRU在建筑层面进行优化?p v i3如何管理与其他系统的接口/交互?p v i4如何以正确的顺序和及时的方式交付?s p i5如何发展供求的商业生态系统?s v/ p div>
本研究的目的是部署Delphi专家启发方法,以更好地了解2040年可持续月球哨所所面临的技术和政策挑战,包括现场资源利用率(ISRU)部署的类型和规模。,我们使用四分之一的李克特量表和两个排名练习在后来进行了三轮Delphi调查,并在后来进行了开放的第一轮和特定问题来评估能量技术和抑制因素。为了为我们的潜在参与者提供更多有关其意见的确定性,并提高了参与度,该研究采用了一种三轮方法,该方法传达给了我们的潜在参与者并决定了前Ante。潜在的参与者是从文献和学术网络中确定的,因为那些对以下领域做出了重大贡献的人:ISRU技术,太空架构,空间资格的电力系统和太空探索。该研究在第一轮中确定了研究人员的20个主要主题,并要求参与者对2040年假设的月球哨所的许多陈述进行评分。从小组的回应中,我们确定了2040年的Lunar哨所开发的三个主要技术挑战。开发高功率的基础结构,着陆器和车辆上升能力以及任务架构和技术方法。我们还确定了2040年的农历前哨基地的三个主要政策挑战:(i)我们和全球政治不稳定,(ii)第一个月球着陆的时间范围可能会延长时间范围,以及(iii)太空中核能的政治厌恶。由于电荷载的不确定性,该组对哨所处的精确能量混合物不确定,但人们普遍同意太阳能PV将是重要的贡献者。核电来源是否可能发挥有用的作用被证明是不确定的,一些参与者指出了太空核电系统的政治厌恶。但是,该命题在每个排名位置上都获得了两票,这表明它具有平坦的分布,包括支持者和批评者。
• 事实证明,MOXIE 设计可以从实验室转移到火星,性能不会下降。• MOXIE 超出了生产的开发要求 2 倍,并实现了不可测量的低氧杂质水平。• MOXIE 展示了品质因数,特别是 iASR 和简单的纯度测量,它们将成为未来系统的基准。• MOXIE 通过表征鲜为人知的属性(包括引线和串联电阻、堆栈 ASR 和交叉泄漏)来消除风险。• MOXIE 验证了更安全的操作模式,包括固定电压、阴极压力反馈和电压前馈。• MOXIE 团队开发了准确的性能预测模型。• MOXIE 学生模拟了一个全尺寸、高度节能的系统设计。 • MOXIE 团队证明,在一个完整的系统中,灰尘并不是什么大问题。• 通过专业和公众宣传,MOXIE 向工程界和公众证明了 ISRU 是一种安全、可靠、有效的方法,可以降低载人探索的成本和复杂性。
降低风险并促进对 ISRU 系统和产品的投资 ‒ 为行业提供关键且支持性的 NASA 能力和资源,包括:• 进行基础研究和技术开发,包括高 TRL(近期)和低 TRL(远期)• 信息、设施和技术(技术转让)• 培养和支持或领导来自多家公司和合作伙伴的多种技术的系统建模/分析、集成和模拟和环境测试 ‒ 支持购买数据以了解月球资源和 ISRU 技术/操作 ‒ 执行和支持月球资源评估和技术演示(CLPS、HLS、国际合作伙伴、行业)
产品。Mission Elements ISRU-Construction Influence ISRU-Construction Needs ISRU-Construction Products Descent/Ascent - Propellant options - Vehicles designed to use ISRU - O 2 , H 2 , CH 4 , other Vehicles - Descent/ascent vehicle size & available payload capability - Lander/ascent vehicle Delta-V/ Rendeqvous Orbit - Lander/engine configuration - Lander servicing design and capability -可重复使用/表面跳跃
- 雷果/土壤发掘,运输和加工以提取,收集和清洁水 - 预部署,远程激活和操作,自主权,推进剂转移,用空罐降落 - 表面操纵和施工启用ISRU
•CARGO-2提供第二次出行运输底盘,1x 40kW FSP,3x ISRU推进剂生产植物,2x液化托盘和1倍地表水运输托盘•移动底盘部署FSPS,布线系统,ISRU托盘和Cargo-2还适用于Mav和Propellant Propellant Propellant Propellant
虽然这项技术尚未在太空中应用,但已在地球上进行过多次模拟现场测试。2008 年,首次月球 ISRU 表面操作模拟现场测试在夏威夷由 NASA、加拿大航天局 (CSA) 和德国空气和空间研究中心 (DLR) 开发的场地进行 [5]。这次测试的目的是展示原型硬件和端到端运行的集成系统的操作,该系统具有以下功能:挖掘材料、生产氧气和储存产品 [5]。其中一个原型系统是洛克希德·马丁宇航公司的 Precursor ISRU 月球氧气试验台 (PILOT),它使用翻滚反应器混合和加热风化层 [5]。另一个测试的原型是 NASA 的 ROxygen,它使用垂直反应器而不是像 PILOT 那样的旋转反应器。垂直反应器与流化床和内部螺旋钻一起使用 [5]。在试验中,PILOT 完成了六次反应堆操作,而 ROxygen 完成了五次。由于模拟现场试验之前系统验证有限,两个系统都未能成功电解提取的水。然而,当用去离子水进行测试时,其他系统功能是有效的 [5]。
预计将在即将到来的12月举行的摘要船员任务。短期住宿后,希望永久存在能够实现大量的科学发现。这将需要为工作人员提供生命支持的消耗品,数量太大而无法从地球进口。这些消耗品的一部分可以在现场生产生物处理,但是不必进口原料。正在考虑的解决方案在于使用重18zotrophic,岩石 - 酸性蓝细菌作为主要生产者:喂养现场自然可用的材料,它们将提供其他生物所需的营养。这个概念最近已经取得了动力,但是由于缺乏贡献团队的一致性,尤其是共享模型有机体,进步会减慢进步。希望解决这个问题,我们介绍了为选择当前模型所做的工作。我们从怀旧家族的预选菌株开始。对Anabaena sp的基因组进行了测序。PCC 7938(唯一尚未可用的人)我们比较了菌株的基因组数据,以确定其相关性并提供对其生理学的见解。然后,我们评估并比较了相关特征:Chie ply,它们利用Martian Regolith营养素的能力,它们对高氯的耐药性(Regolith中存在的有毒化合物)以及作为中学生产者的原料(在这里是异养细菌和较高植物)。这导致选择了Anabaena sp。PCC 7938,我们建议作为模型蓝细菌,用于开发基于火星的Natu-Natu-lal资源。