执行摘要2019年,国际太空勘探协调小组(ISECG)的技术工作组(TWG)建立了一个差距评估团队(GAT),以实地资源利用率(ISRU)为主题。ISRU GAT评估旨在检查和确定技术需求,并告知ISECG有关必须解决的技术差距,以实施预见的任务。最终,该计划打算在考虑投资是特定的勘探技术时,在确定潜在的协作机会的同时,在考虑投资是特定的探索技术时,在专家之间进行国际对话。以下各节是完整报告的主要部分的执行摘要。战略知识差距定义,以帮助确保人类探索月球的计划将取得成功,并进行了评估以确定人类勘探技术和能力的状态。发现知识和/或能力不足的地方,创建了需求的说明。从这项工作中,以三个广泛的探索主题创建了被称为战略知识差距(SKG)的列表,其中ISRU与第一个和第三个主题有关。从那时起,SKG进行了审查,并用于指导和优先考虑人类探索月球的开发和飞行活动。从这项工作中创建了一个表,该表确定了SKG对4个主要资源/功能领域和ISRU操作中的每个操作,如何/何处关闭SKG的潜在影响,以及在三相人类月球探索体系中,SKG需要关闭SKG。在这项工作开始时,对ISRU技术,能力和运营的最新批准的SKG列表(极性水资源/功能领域)(极性水,太阳能风力波动,氧气/金属来自Regolith,以及建筑和制造)以及任何ISRU MACTO的整体运作。该表的目的(表3)是允许决策者和开发人员优先级和计划关闭这些SKG,以实现所需的ISRU功能和产品。ISRU功能分解和流程图识别,提取,处理和使用空间资源将需要广泛的技术学科领域的技术,系统和能力开发。从资源识别到产品交付的端到端过程还需要大量的顺序和并行步骤。为了确保从“勘探到产品”的整个端到端序列中正确识别和解决所有技术和过程,ISRU GAP研究团队创建了两组表/图形。第一组表研究了研究中检查的三个主要ISRU功能的范围和分解:1)原位推进剂和易于消耗的生产,2)Initu构造,以及3)与ISRU衍生的原料中的空间制造。对于这三个主要的ISRU功能中的每一个,成功实施功能所需的主要功能得到了定义,以及与这些主要功能相关的亚功能(如图3、4和5所示)。这些表使决策者和开发人员能够定义,解决和跟踪过去和正在进行的活动以成功实施ISRU,但这些表并未提供有关这些功能和子功能中每个功能和子功能中的每一个可能如何影响或受到ISRU其他领域的影响。为了提供这种见解,创建了一个集成的ISRU功能流程图(图6)。该数字允许决策者和开发人员了解端到端流程中仍然存在差距或缺陷的位置,并可以更好地理解伙伴关系和招标的接口。ISRU在人类探索原地资源利用率(ISRU)中涉及任何要利用并利用本地或原地资源来创建用于机器人的产品和服务的硬件或操作,并提供人类勘探和持续存在,而不是从地球上带来。ISRU的直接目标是大大减少人类从月球和火星返回并返回的直接支出,以建立长期船员的自给自足,用于扩大科学和勘探工作,并实现空间的商业化。要将ISRU融合到任务体系结构中的最大好处,需要设计其他系统围绕ISRU衍生产品的可用性和使用。因此,ISRU是一种破坏性的能力,需要
随着太空技术的快速发展,外星探索逐渐倾向于进一步延伸和更透彻的行星探索。作为人类建立永久行星基础的尝试的第一步,通过原位资源利用(ISRU)建立农历基地(ISRU)将大大减少对地球供应的依赖。月球资源,包括矿产资源,水/冰资源,挥发物和太阳能,将有助于建立长期生命支持和科学探索任务的月球基地,尽管我们必须考虑高真空度,低重力,极端温度条件等的挑战。本文对过去正在发展的ISRU的过程进行了全面的综述,以及几种ISRU技术的最新进展,包括原位水获取,原位氧气生产,原位建筑和原位的现场能源利用以及原位生命的生命支持和月球上的植物种植。尽管能够为月球基础建筑和科学探索提供一些物质和能源供应,但ISRU技术仍需要持续验证并升级以满足进一步的Lunar Exploration任务的更高要求。最终,提出了未来十年对月球ISRU技术的三步制定计划,其中包括提供技术解决方案,提供有效载荷的技术验证并进行现场实验,以建立一个永久的伦纳族站和进行长期的长期月球表面科学活动。ISRU技术的概述,我们的建议将为中国未来的月球勘探任务提供潜在的指导。
美国国家航空航天局 (NASA) 内部目前有多个项目支持 ISRU 的研发,主要是为了支持该机构的阿尔特弥斯 (Artemis) 计划,因为 NASA 希望利用从月球提取的资源为宇航员制造火箭燃料和水。NASA 还有几个研究小行星的科学任务,这可能为未来的太空资源开采提供信息。美国政府的其他努力包括美国地质调查局的研究和自然资源测绘以及国防高级研究计划局 (DARPA) 对 ISRU 的研究。此外,NASA 已与四家公司签订了未来收集太空资源的合同,从而为私营部门的太空资源开采开创了先例。几家美国公司也在寻求开采太空资源用于 ISRU 和地球使用。
独特见解 - 蓝色起源正在内部资助 MK1 着陆器的开发和两次示范任务 - 1kW – 100 kW 的可靠电力对于 ISRU 和其他固定资产和移动元素非常重要 - 月球南极附近只要有 3 个位置合适的电源节点,就可以在数百平方公里的范围内提供几乎连续的电力,这可能允许单个最终用户元素将能量存储的质量重新分配给其他功能 - 由 NASA STMD Tipping Point 资助至 TRL6 的 Blue Alchemist ISRU 技术打破了从地球向月球运送元素的范式。
简介:月球表面创新联盟 (LSIC) 由 NASA 的空间技术任务理事会创立,并由约翰霍普金斯大学应用物理实验室管理。LSIC 的主要目标是将大学、非营利机构、商业公司、NASA 和其他政府机构聚集在一起,以确定在月球上建立持续存在所涉及的技术能力和挑战。LSIC 由四个重点领域组成,而原位资源利用 (ISRU) 焦点小组的目标是促进 ISRU 相关技术的开发,以实现在月球表面的持续存在,包括促进社区成员内部和之间的交流。
图例 ECLSS = 环境控制与生命支持系统 ISRU = 现场资源利用 PMAD = 电源管理与分配 RFC = 再生燃料电池 TRL = 技术就绪水平 * = 特定应用技术就绪水平
ISRU 拥有领先的研究人员、工程师和商业人才。在许多领域拥有专业知识,包括月球和陆地地质学、行星科学、材料科学、资源开采和选矿、化学工程、制造、商业和商业服务
简介:NASA 已确定迫切需要设计、制造和测试原位资源利用 (ISRU) 组件,以便在月球和/或火星上利用风化层资源生产纯净水、氧气和氢气。长期停留在月球或火星表面需要随时可用的纯净水源。水净化后,可用作氧气来源(既可作为居住舱人员的可呼吸空气,又可作为推进剂氧化剂),也可用作氢气作为推进剂燃料。将任何这些资源大量运输到月球或火星表面都很困难且成本高昂,因此必须使用原位资源来生成推进剂和生命支持消耗品。NASA 已明确确定需要开发和测试关键组件,以便从月球两极永久或近永久阴影区 (PSR) 的冰中提取和净化水。月球水可用于生产氢氧推进剂,用于月球运输工具(上升器和着陆器)、可重复使用的地月运输工具,以及最终用于人类火星及更远地区的任务。预计每次任务需要生产 14 至 50 公吨 H 2 /O 2 推进剂。此前从未有人对原位月球水进行过净化和电解。它带来了独特的挑战,与月球水和月球极地环境中存在的危险、有毒和易燃气体有关;以及发射到月球表面的系统通常存在的限制(质量、体积、功率、自主性、稳健性、可靠性和寿命)。这项技术的开发对于人类实现在月球上的可持续存在至关重要。利用该技术支持此类努力还将认证硬件是否可用于火星,在火星上,脱离地球对于机组人员的生存来说更为关键。
组研究多年冻土,天体生物学,样品,杜里卡斯特,冰台深度,ISRU,蒸气扩散,水蒸气含量,气候记录,水源和稳定性,大气模型,气候模型和大气逃脱都需要更好地估计这些关键的5米。
规划需求,其中太空任务通常是独立设计的。例如,在阿波罗任务中,我们采用长期携带策略,一次性携带每次登月任务所需的所有物品;在国际空间站补给任务中,我们采用补给策略,每次按需运送有效载荷。太空基础设施的发展,如阿尔忒弥斯任务中指定的原位资源利用 (ISRU)、电力系统和月球基础表面栖息地 [ 11 ],推动了在太空任务设计中考虑任务相互依赖性的需求。这些基础设施需要在任务的早期阶段部署,因此会产生高昂的任务成本;我们预计,通过利用基础设施更好地支持探索(例如从 ISRU 生成资源),可以在任务的后期支付高昂的初始部署成本。不同任务目标和长期视野的多样化基础设施使物流规划变得更具挑战性。