Chatham House规则适用于峰会会议和国家代表团会议,这意味着,尽管ISTP报告中有峰会会议的书面记录,但未确定单个发言人。首先建立峰会是一种鼓励开放和坦率的双向对话的方式,就引入了规则。因此,没有全体会议会议的公开记录,本报告的书面部分的主要部分专门用于峰会会议。在峰会会议的报告中确定了各个国家,但没有个人教育部长或工会领导人,尽管两组的贡献都包含在摘要中。
砷(AS)是一种剧毒的金属,它会干扰植物的生长并破坏植物中各种生化和分子过程。在这项研究中,通过对根部内生菌的缝合体和静脉细菌的联合接种s sp。ISTPL4。 进行了一项随机实验,其中水稻在受控条件和压力条件下生长。 对照组由未经治疗和未压力的植物(C1),治疗和未压力的植物(C2),压力和未处理植物(T1)以及受压力和处理的植物(T2)组成(T2)。 各种表型特征,例如芽长(SL),根长度(RL),新鲜重量(SFW),根新鲜重量(RFW),芽干重(SDW)和根干重(RDW)和生化参数,以及绿比植物含量,蛋白质含量,蛋白质含量以及抗氧化剂的剂量。 在T2中增加了各种抗氧化剂酶的活性,随后是T1植物。 此外,在4.11μmolmg -1,2.53μmg -1,2.53μmg -1和3.62μmg -1,分别分别在4.11μmolmg -1,2.53μmg -1,2.53μmg -1,2.62μmg -1 fw植物中发现了高浓度的植物激素(ET),Gibberellic Acid(GA)和细胞分裂素(CK)。 AA的结果表明,与T1植物的根相比,T2植物的根(131.5 mg kg -1)的积累增加了(120 mg kg -1)。 它表明,与未接种的植物相比,微生物处理植物根部的积累和隔离量增加(T1)。ISTPL4。进行了一项随机实验,其中水稻在受控条件和压力条件下生长。对照组由未经治疗和未压力的植物(C1),治疗和未压力的植物(C2),压力和未处理植物(T1)以及受压力和处理的植物(T2)组成(T2)。各种表型特征,例如芽长(SL),根长度(RL),新鲜重量(SFW),根新鲜重量(RFW),芽干重(SDW)和根干重(RDW)和生化参数,以及绿比植物含量,蛋白质含量,蛋白质含量以及抗氧化剂的剂量。在T2中增加了各种抗氧化剂酶的活性,随后是T1植物。此外,在4.11μmolmg -1,2.53μmg -1,2.53μmg -1和3.62μmg -1,分别分别在4.11μmolmg -1,2.53μmg -1,2.53μmg -1,2.62μmg -1 fw植物中发现了高浓度的植物激素(ET),Gibberellic Acid(GA)和细胞分裂素(CK)。AA的结果表明,与T1植物的根相比,T2植物的根(131.5 mg kg -1)的积累增加了(120 mg kg -1)。它表明,与未接种的植物相比,微生物处理植物根部的积累和隔离量增加(T1)。我们的数据表明,这种微生物组合可通过增加SOD,CAT,CAT,PAL,PPO和POD等抗氧化剂的活性来减少植物的毒性作用。此外,水稻植物可以承受由于在存在微生物组合的情况下的植物激素的主动合成而承受的应力。
摘要:技术辅助诊断在医疗保健系统中越来越重要。脑肿瘤是全球死亡的主要原因,治疗计划在很大程度上依赖于准确的生存预测。胶质瘤是一种脑肿瘤,死亡率特别高,可以进一步分为低级别或高级别,这使得生存预测具有挑战性。现有文献提供了几种使用不同参数的生存预测模型,例如患者年龄、大体全切除状态、肿瘤大小或肿瘤等级。然而,这些模型往往缺乏准确性。使用肿瘤体积而不是大小可以提高生存预测的准确性。为了满足这一需求,我们提出了一种新模型,即增强型脑肿瘤识别和生存时间预测 (ETISTP),该模型计算肿瘤体积,将其分类为低级别或高级别胶质瘤,并以更高的准确性预测生存时间。ETISTP 模型集成了四个参数:患者年龄、生存天数、大体全切除 (GTR) 状态和肿瘤体积。值得注意的是,ETISTP 是第一个使用肿瘤体积进行预测的模型。此外,我们的模型允许并行执行肿瘤体积计算和分类,从而最大限度地缩短计算时间。模拟结果表明,ETISTP 优于著名的生存预测模型。