摘要。,就置换矩阵而言,我们在任何任意尺寸d≥2中介绍了交换门和ISWAP门的明确描述。此外,我们通过引入一个更通用的门XSWAP来统一这些门,该门包括x = 1的交换和ISWAP,x = 1 and x = i(即√ - 1)。较高的XSWAP,例如,D> 2的交换和ISWAP门用作在两个d级别上运行的量子逻辑门。对于d = 2,众所周知,ISWAP与交换不同是通用量子计算的。当x =±1。我们通过置换矩阵对XSWAP的明确表示极大地促进了证明。
在追求量子模拟和容错量子计算的过程中,稳健性和可调谐性之间的权衡是一个核心挑战。特别是,量子架构通常被设计为以牺牲可调谐性为代价来实现高相干性。许多当前的量子比特设计具有固定的能级,因此可控相互作用的类型有限。在这里,通过将固定频率的超导电路绝热转换为可修改的 Floquet 量子比特,我们展示了具有完全可调各向异性的 XXZ Heisenberg 相互作用。该交互模型可以充当一组富有表现力的量子操作的原语,但也是自旋系统量子模拟的基础。为了说明我们的 Floquet 协议的稳健性和多功能性,我们定制了 Heisenberg Hamiltonian 并实现了具有良好估计保真度的双量子比特 iSWAP、CZ 和 SWAP 门。此外,我们在更高的能级之间实现了 Heisenberg 相互作用,并使用它来构建三量子比特 CCZ 门,同样具有竞争保真度。我们的协议适用于多个固定频率高相干性平台,为高性能量子信息处理提供了一系列交互。它还确立了 Floquet 框架作为探索量子电动力学和最优控制工具的潜力。
我们描述了一个名为 Presto 的数字微波平台,该平台专为测量和控制多个量子比特 (qubit) 而设计,基于第三代射频片上系统。Presto 使用直接数字合成在 16 个同步输出端口上创建高达 9 GHz 的信号,同时同步分析 16 个输入端口上的响应。Presto 具有 16 个 DC 偏置输出、四个输入和四个输出(用于数字触发器或标记)以及两个连续波输出(用于合成高达 15 GHz 的频率)。通过多个 Presto 单元的确定性同步,可以扩展到大量量子比特。Python 应用程序编程接口配置固件以合成和分析脉冲,由事件序列器协调。分析集成了模板匹配(匹配过滤)和低延迟(184-254 ns)反馈,以实现广泛的多量子比特实验。我们通过对由两个通过通量可调耦合器连接的超导量子比特组成的样本进行实验,展示了 Presto 的功能。我们展示了单个量子位的单次读出和主动重置;单量子位门的随机基准测试显示保真度达到 99.972%,受量子位相干时间的限制;以及双量子位 iSWAP 门的校准。
量子点中的仅交换 (EO) 自旋量子比特为构建可扩展的设备布局提供了广阔的设计前景。到目前为止,对涉及六个量子点中的六个电子的双 EO 量子比特操作的研究仅限于少数可能的配置,以前的研究缺乏对设计考虑和量子纠错影响的分析。使用一种简单快速的优化方法,我们在 450 个独特的平面六点拓扑上为 CX、CZ、iSWAP、泄漏控制 CX 和泄漏控制 CZ 双量子比特门生成完整的脉冲序列,并分析了不同拓扑类之间的序列长度差异(最多可减少 43%)。此外,我们表明,放宽对操作后自旋位置的限制可以进一步缩短序列长度;相反,以特定方式约束这些位置会生成一个 CXSWAP 操作,与标准 CX 相比,其额外成本最小。我们将此脉冲库集成到英特尔量子堆栈中,并通过实验验证 Tunnel Falls 芯片上的脉冲序列,以在线性连接设备中进行不同的操作,以确认它们按预期工作。最后,我们探索了这些结果对量子误差校正的架构影响。我们的工作为可扩展量子点架构的未来实现提供了硬件和软件设计选择指导。