R. E. Noskov博士,A。Machnev,博士I. I. Shishkin,P。Ginzburg教授电气工程系特拉维夫大学拉姆特·阿维夫(Ramat Aviv),特拉维夫69978,以色列电子邮件:romannoskov@mail.tau.tau.tau.ac.il R. E. Noskov博士I. I. Shishkin,P。Ginzburg教授Light -Merter Mertaction Center Tel Aviv University Ramat Aviv,特拉维夫69978,以色列博士I. I. Shishkin物理与工程系ITMO大学圣彼得堡197101年,M。V。Novoselova博士A. Ezhov,E。A. Shirshin博士M.V. Lomonosov莫斯科州立大学Leninskie Gory 1/2,莫斯科119991,俄罗斯博士A. A. Ezhov量子技术中心M.V. Lomonosov莫斯科州立大学Leninskie Gory 1/2,莫斯科119991,俄罗斯A. Ezhov,E。A. Shirshin博士M.V.Lomonosov莫斯科州立大学Leninskie Gory 1/2,莫斯科119991,俄罗斯博士A. A. Ezhov量子技术中心M.V. Lomonosov莫斯科州立大学Leninskie Gory 1/2,莫斯科119991,俄罗斯Lomonosov莫斯科州立大学Leninskie Gory 1/2,莫斯科119991,俄罗斯博士A.A. Ezhov量子技术中心M.V. Lomonosov莫斯科州立大学Leninskie Gory 1/2,莫斯科119991,俄罗斯A. Ezhov量子技术中心M.V.Lomonosov莫斯科州立大学Leninskie Gory 1/2,莫斯科119991,俄罗斯Lomonosov莫斯科州立大学Leninskie Gory 1/2,莫斯科119991,俄罗斯
$ 共同第一作者 *共同最后作者 连载标题:靶向疗法机械地重新编程黑色素瘤细胞 关键词:黑色素瘤、细胞外基质、YAP、MRTF、靶向疗法、耐药性 利益冲突。作者声明不存在潜在利益冲突。财政支持:这项工作得到了癌症计划框架内的国家健康与医学研究所 (Inserm)、Ligue Contre le Cancer、国家癌症研究所 (INCA_12673)、ARC 基金会、ITMO Cancer Aviesan(国家生命科学与健康联盟、国家生命科学与健康联盟)和法国政府的资金支持(国家研究机构,ANR)通过“未来投资”LABEX SIGNALIFE:计划编号# ANR-11-LABX-0028-01。我们还感谢 Conseil général 06 和 Canceropôle PACA 的财政支持。 RBJ 获得了 ARC 基金会的博士奖学金。 IB 获得了抗癌联盟的博士奖学金。通讯作者:Sophie Tartare-Deckert tartare@unice.fr 和 Marcel Deckert deckert@unice.fr,Inserm UMR1065/C3M,151 Route de Ginestière BP2 3194,F-06204 Nice cedex 3。
AEA年度排放分配AEF同意电子格式AI年度信息A6.4ER第6.4条第6.4条减少BAU业务,像往常 Carbon Dioxide Removal CMA Conference of the Parties serving as the Meeting of the Parties to the Paris Agreement CO 2 Carbon Dioxide COP Conference of The Parties CORSIA Carbon Offsetting and Reduction Scheme for International Aviation CRCF Carbon Removals and Carbon Farming DACCS Direct Air Carbon Capture and Storage EOR Enhanced Oil Recovery ESR Effort-Sharing Regulation ETS Emissions Trading System EU European Union EU ETS EU Emissions贸易体系EUA欧盟津贴温室气体温室气体ICVCM自愿碳市场IEA国际能源机构IPCC气候变化ISO ISO国际标准化ISO国际标准化的缓解结果Lulucf lulucf土地使用,土地使用变化,土地使用变化和森林林>
BIM 建筑信息模型 BVKm 十亿车辆公里 CBAM 碳边境调整机制 CCACB 气候变化和适应协调委员会 CCMSAP 气候变化减缓战略和行动计划 CCUS 碳捕获、利用和储存 CH 4 甲烷 CO 2 二氧化碳 CoHE 高等教育委员会 CORSIA 国际航空碳抵消和减排计划 DRI 直接还原铁 ED 消费税 EPB 建筑能源性能 EPC 能源性能证书 ETS 排放交易体系 EU 欧盟 EV 电动汽车 FT 高速列车 GAP 良好农业规范 GDP 国内生产总值 GPP 绿色公共采购 GW 千兆瓦 ha 公顷 HFC 氢氟碳化物 HST 高速列车 IPCC 政府间气候变化专门委员会 ITMO 国际转移减缓成果 ITS 智能交通系统 LCE 低碳经济 LTS 长期气候战略 LULUCF 土地利用、土地利用变化和林业 mha 百万公顷 MRV 监测、报告和核查 Mton 百万吨MTP 中期计划 MW 兆瓦 MWh 兆瓦时 N 2 O 一氧化二氮 NDC 国家自主贡献 NF3 三氟化氮 NIR 国家清单报告
1 哥本哈根大学全球研究所进化全息基因组学中心,丹麦哥本哈根,2 圣地亚哥动物园野生动物联盟贝克曼保护研究中心,美国加利福尼亚州埃斯孔迪多,3 俄罗斯新西伯利亚俄罗斯科学院分子与细胞生物学研究所基因组多样性与进化系,4 俄罗斯新西伯利亚新西伯利亚州立大学自然科学系,5 美国德克萨斯州休斯顿贝勒医学院分子与人类遗传学系基因组结构中心,6 美国德克萨斯州休斯顿莱斯大学理论生物物理中心和计算机科学系,7 美国马萨诸塞州剑桥麻省理工学院和哈佛大学布罗德研究所,8 美国加利福尼亚州圣地亚哥 Bionano Genomics 研究与开发系,9 俄罗斯圣彼得堡 ITMO 大学 SCAMT 研究所应用基因组学实验室,10物种生存中心,史密森尼国家动物园和保护生物学研究所,弗吉尼亚州弗兰特罗亚尔,美国,11 沃尔特·里德生物系统学部,博物馆支持中心 MRC-534,史密森尼学会,马里兰州苏特兰,美国,12 沃尔特·里德陆军研究所,马里兰州银泉,美国,13 马里兰州洛约拉大学,马里兰州巴尔的摩,美国,14 保护基因组学中心,史密森尼国家动物园和保护生物学研究所,华盛顿特区,美国,15 乔治梅森大学史密森尼-梅森保护学院,弗吉尼亚州弗兰特罗亚尔,美国
Stanislav A. Bondarev 1*,Maya V. Uspenskaya 2,JérémyLeclercq3,ThéoFalgarone3,Galina A. Zhouravleva 1和Andrey V. Kajava 3* 1 1 2 197101年,圣彼得堡生物工程ITMO大学研究所,俄罗斯联合会,3中心,Recherche En Biologie Cellulaie de Montpellier,CNRS,CNRS,MontpellierUniversité,Montpellier,34293,法国 *在这些原纤维中,每个多肽链都采用相同的含二含量的构象,并且这些链以平行和内寄存器的方式堆叠。在过去的几年中,关于不同淀粉样蛋白蛋白的共聚集的大量数据已经积累了大量数据。在已知的聚集示例中是不同酵母菌蛋白和人类蛋白RIP1和RIP3的杂聚集物。由于共聚集与功能性淀粉样蛋白的淀粉样蛋白的感染性和分子机制等重要现象有关,因此我们在更多细节中分析了其结构方面。在同一淀粉样纤维中,不同蛋白质的轴向堆叠是最常见的聚集类型之一。通过使用基于淀粉样蛋白增长尖端的结构相似性的方法,我们开发了一种计算方法来预测能够通过轴向堆积相互相互作用的淀粉样蛋白生成 -ark结构。此外,我们编制了一个数据集,该数据集由26对具有或无能力共聚集的蛋白质对组成。我们利用此数据集测试和完善我们的算法。开发的方法为多种应用开辟了一种方法,包括鉴定能够触发人类淀粉样变性的微生物蛋白。amylocomp可在网站上找到:https://bioinfo.crbm.cnrs.fr/index.php?route = tools&tool = 30。
AC Alternating current AEOs Agricultural Extension Officers AFD Agence Francaise de Development ATL Above-The-Line campaigns BCC Behaviour Change Communication BLEENS Biogas, Liquified petroleum gas, Electricity, Ethanol, Natural gas and Solar BTL Below-The-Line campaigns CAPI Computer Assisted Personal Interviews CCA Clean Cooking Alliance CCG Climate Compatible Growth CFAs Community Forest Associations DALYS Disability-Adjusted Life Years DC Direct Current EPC Electric pressure Cooker ESCOs Energy Service Companies FDI Foreign direct investment FGD Focus Group Discussion fNRB fraction of Non-Renewable Biomass GeCCo Global Electric Cooking Coalition GESIP Green Economy Strategy and Implementation Plan GHG Green House Gas ICS Improved cooking solutions INEP Integrated National Energy Plan IoT Internet of Things ITMO internationally transferred mitigation outcomes IVAs Independent Verification Agents KES Kenya Shillings KIRDI Kenya Industrial Research and Development institute KNeCS Kenya National electric Cooking Strategy KNES Kenya National Electrification Strategy KOSAP Kenya Off-Grid Solar Access Project KOSAP Kenya Off-grid Solar Access Project KPLC Kenya Power & Lighting Company KPLC Kenya Power and Lighting Company KWh Kilo watt Hour LCPDP Least Cost Power Development Plan LMCP Last Mile Connectivity Programme LPG Liquified Petroleum Gas MECS Modern Energy cooking Services MECS Modern能源烹饪服务MOEP能源和石油部MTF多层框架MTF多层框架NCCAP国家气候变化行动计划NDC国家确定的捐款NGOS非政府组织在账单上的账单融资
1 俄勒冈大学生物系和生态与进化研究所,尤金,美国;2 牛津大学韦瑟罗尔分子医学研究所,牛津,英国;3 冷泉港实验室西蒙斯定量生物学中心,冷泉港,美国;4 北卡罗来纳大学教堂山分校遗传学系,教堂山,美国;5 哥本哈根大学全球研究所伦贝克地球遗传学中心,哥本哈根,丹麦;6 加利福尼亚大学洛杉矶分校生态与进化生物学系,洛杉矶,美国;7 麦吉尔大学人类遗传学系,蒙特利尔,加拿大;8 墨尔本大学数学与统计学院墨尔本综合基因组学,墨尔本,澳大利亚;9 弗莱堡大学数学随机学系,弗莱堡,德国;10 华盛顿大学基因组科学系,西雅图,美国; 11 美国亚利桑那州立大学生物设计研究所和生命科学学院,坦佩;12 美国加利福尼亚大学洛杉矶分校大卫·格芬医学院人类遗传学系,洛杉矶;13 以色列赫兹利亚赫兹利亚跨学科中心 Efi Arazi 计算机科学学院,赫兹利亚,以色列;14 美国斯坦福大学生物系,斯坦福,美国;15 美国哥伦比亚大学生态、进化与环境生物学系,纽约;16 美国康奈尔大学计算生物学系,伊萨卡,美国;17 俄罗斯联邦圣彼得堡信息技术与光学大学计算机技术实验室;18 墨西哥国立自治大学国际人类基因组研究实验室,墨西哥尤里基亚;19 美国亚利桑那大学分子与细胞生物学系,图森,美国;20 美国俄勒冈大学数学系,尤金,美国; 21 英国牛津大学李嘉诚健康信息与发现中心大数据研究所
[1] R. Lewis,U。Olofsson。轮轨界面手册,第一版。;伍德海德出版有限公司:英国剑桥,2009年。[2] O. Hajizad,A。Kumar,Z。Li,R.H。Petrov,J。Sietsma,R。Dollevoet。微观结构对铁路应用中Bainitic钢的机械性能的影响。金属,2019,9,778。[3] i.v.gorynin。结构材料是北极基础设施可靠性和环境安全的重要组成部分。北极:生态与经济学2015。卷。3,第19号,pp。82-87。(在俄语)[4] E.I.Khlusova,O.V。 sych。 为北极创造冷抗性结构材料。 历史,经验,现代状态。 创新2018。 卷。 11,第241页,pp。 85-92。 (在俄语)[5] V.R. Kuz'min,A.M。 Ishkov。 预测结构的冷阻力和设备的可操作性。 m。:Mashinostroenie,1996。 (在俄语)[6] I.S. Filatov,A.M。 ISHKOV,I.N。 Cherskii。 改善寒冷气候条件的材料和设备的质量和可靠性的问题。 Yakutsk:科学和技术信息中心,1987年。 (在俄语)[7] A.K. Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Khlusova,O.V。sych。为北极创造冷抗性结构材料。历史,经验,现代状态。创新2018。卷。11,第241页,pp。85-92。 (在俄语)[5] V.R. Kuz'min,A.M。 Ishkov。 预测结构的冷阻力和设备的可操作性。 m。:Mashinostroenie,1996。 (在俄语)[6] I.S. Filatov,A.M。 ISHKOV,I.N。 Cherskii。 改善寒冷气候条件的材料和设备的质量和可靠性的问题。 Yakutsk:科学和技术信息中心,1987年。 (在俄语)[7] A.K. Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。85-92。(在俄语)[5] V.R.Kuz'min,A.M。 Ishkov。 预测结构的冷阻力和设备的可操作性。 m。:Mashinostroenie,1996。 (在俄语)[6] I.S. Filatov,A.M。 ISHKOV,I.N。 Cherskii。 改善寒冷气候条件的材料和设备的质量和可靠性的问题。 Yakutsk:科学和技术信息中心,1987年。 (在俄语)[7] A.K. Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Kuz'min,A.M。 Ishkov。预测结构的冷阻力和设备的可操作性。m。:Mashinostroenie,1996。(在俄语)[6] I.S.Filatov,A.M。 ISHKOV,I.N。 Cherskii。 改善寒冷气候条件的材料和设备的质量和可靠性的问题。 Yakutsk:科学和技术信息中心,1987年。 (在俄语)[7] A.K. Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Filatov,A.M。 ISHKOV,I.N。Cherskii。 改善寒冷气候条件的材料和设备的质量和可靠性的问题。 Yakutsk:科学和技术信息中心,1987年。 (在俄语)[7] A.K. Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Cherskii。改善寒冷气候条件的材料和设备的质量和可靠性的问题。Yakutsk:科学和技术信息中心,1987年。(在俄语)[7] A.K.Andreev,B.S。 ermakov。 低温设备的材料。 s-petersburg:大学ITMO,2016年。 (在俄语)[8] Yu.P. Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Andreev,B.S。ermakov。低温设备的材料。s-petersburg:大学ITMO,2016年。(在俄语)[8] Yu.P.Solntsev,B.S。 Ermakov,O.I。 睡觉。 ermakov。Solntsev,B.S。Ermakov,O.I。 睡觉。 ermakov。Ermakov,O.I。睡觉。ermakov。低温和低温温度的材料。S-Petersburg:Khimizdat,2008。(在俄语)[9] B.S.资源和维修低温和食品设备的钢结构。S-Petersburg:Spbgunipt,2011年。(在Russ。)[10] A.I.Rudskoi,S.G。Parshin。高强度冷和低温钢的冶金和可焊性的高级趋势。金属2021,11,1891。[11] J.-K。 Ren,Q.-Y.Chen,J。Chen,Z.-Y. 刘。 钒添加在热滚动的高MN奥氏体钢中的拉伸和低温 - 温度的夏比冲击特性中的作用。 材料科学与工程A 2021,811,141063 [12] 12 B. Kim,S.G。Lee,D.W。 Kim,Y.H。 Jo,J。Bae,S.S。Sohn,S。Lee。 添加Ni和Cu对奥氏体22mn-0.45c – 1al钢的低温 - 温度拉伸和夏比冲击特性的影响。 合金和化合物杂志2020,815,152407。 [13] C. Li,K。Li,J。Dong,J。Wang,Z。Shao。 FE-20/27MN-4AL-0.3C低磁性钢的机械行为和微观结构在房间和低温温度下。 材料科学与工程A 2021,809,140998。 [14] P.P. Poletskov,A.S。 Kuznetsova,D.YU。 Alekseev,对热卷高强度冷耐钢板产物的生产中世界一流发展的分析,其屈服强度为≥600n/mm2。 Nosov Magnitogorsk州立技术大学2020年的Vestnik。 卷。 18,第4页,pp。 32-38。 (在俄语)[15] L.M. [16] A.B.Chen,J。Chen,Z.-Y.刘。钒添加在热滚动的高MN奥氏体钢中的拉伸和低温 - 温度的夏比冲击特性中的作用。材料科学与工程A 2021,811,141063 [12] 12 B. Kim,S.G。Lee,D.W。 Kim,Y.H。Jo,J。Bae,S.S。Sohn,S。Lee。 添加Ni和Cu对奥氏体22mn-0.45c – 1al钢的低温 - 温度拉伸和夏比冲击特性的影响。 合金和化合物杂志2020,815,152407。 [13] C. Li,K。Li,J。Dong,J。Wang,Z。Shao。 FE-20/27MN-4AL-0.3C低磁性钢的机械行为和微观结构在房间和低温温度下。 材料科学与工程A 2021,809,140998。 [14] P.P. Poletskov,A.S。 Kuznetsova,D.YU。 Alekseev,对热卷高强度冷耐钢板产物的生产中世界一流发展的分析,其屈服强度为≥600n/mm2。 Nosov Magnitogorsk州立技术大学2020年的Vestnik。 卷。 18,第4页,pp。 32-38。 (在俄语)[15] L.M. [16] A.B.Jo,J。Bae,S.S。Sohn,S。Lee。添加Ni和Cu对奥氏体22mn-0.45c – 1al钢的低温 - 温度拉伸和夏比冲击特性的影响。合金和化合物杂志2020,815,152407。[13] C. Li,K。Li,J。Dong,J。Wang,Z。Shao。FE-20/27MN-4AL-0.3C低磁性钢的机械行为和微观结构在房间和低温温度下。材料科学与工程A 2021,809,140998。[14] P.P.Poletskov,A.S。 Kuznetsova,D.YU。 Alekseev,对热卷高强度冷耐钢板产物的生产中世界一流发展的分析,其屈服强度为≥600n/mm2。 Nosov Magnitogorsk州立技术大学2020年的Vestnik。 卷。 18,第4页,pp。 32-38。 (在俄语)[15] L.M. [16] A.B.Poletskov,A.S。 Kuznetsova,D.YU。Alekseev,对热卷高强度冷耐钢板产物的生产中世界一流发展的分析,其屈服强度为≥600n/mm2。Nosov Magnitogorsk州立技术大学2020年的Vestnik。卷。18,第4页,pp。32-38。(在俄语)[15] L.M.[16] A.B.Roncery,S。Weber,W。Theisen。 焊接塑料钢的焊接。 Scripta Metitialia 2012,66,997–1001。 Pereira,R.O。 桑托斯,学士学位 Carvalho,M.C。 Butuc,G。Vincze,L.P。Moreira。 评估第三代高强度钢的激光焊接性。 金属2019,9,1051。 [17] J. Verma,R.V。 太极拳。 焊接过程和条件对双工不锈钢焊接的微结构,机械性能和耐腐蚀性的影响 - 综述。 制造过程杂志2017,25,134–152。 [18] C.K.H. Martin-root。 复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。 Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Roncery,S。Weber,W。Theisen。焊接塑料钢的焊接。Scripta Metitialia 2012,66,997–1001。Pereira,R.O。 桑托斯,学士学位 Carvalho,M.C。 Butuc,G。Vincze,L.P。Moreira。 评估第三代高强度钢的激光焊接性。 金属2019,9,1051。 [17] J. Verma,R.V。 太极拳。 焊接过程和条件对双工不锈钢焊接的微结构,机械性能和耐腐蚀性的影响 - 综述。 制造过程杂志2017,25,134–152。 [18] C.K.H. Martin-root。 复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。 Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Pereira,R.O。桑托斯,学士学位Carvalho,M.C。 Butuc,G。Vincze,L.P。Moreira。 评估第三代高强度钢的激光焊接性。 金属2019,9,1051。 [17] J. Verma,R.V。 太极拳。 焊接过程和条件对双工不锈钢焊接的微结构,机械性能和耐腐蚀性的影响 - 综述。 制造过程杂志2017,25,134–152。 [18] C.K.H. Martin-root。 复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。 Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Carvalho,M.C。Butuc,G。Vincze,L.P。Moreira。 评估第三代高强度钢的激光焊接性。 金属2019,9,1051。 [17] J. Verma,R.V。 太极拳。 焊接过程和条件对双工不锈钢焊接的微结构,机械性能和耐腐蚀性的影响 - 综述。 制造过程杂志2017,25,134–152。 [18] C.K.H. Martin-root。 复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。 Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Butuc,G。Vincze,L.P。Moreira。评估第三代高强度钢的激光焊接性。金属2019,9,1051。[17] J. Verma,R.V。太极拳。焊接过程和条件对双工不锈钢焊接的微结构,机械性能和耐腐蚀性的影响 - 综述。制造过程杂志2017,25,134–152。[18] C.K.H.Martin-root。 复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。 Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Martin-root。复杂相和双相高强度钢的激光焊接 - 焊接对微结构和可高效性的影响。Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。 [19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。 修饰的复合相钢的双点激光焊接。 金属材料档案2016,第1卷。 61,pp。 1999–2008。 [20] V.I. Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Ph.D.论文,滑铁卢大学,加拿大安大略省滑铁卢,2020年。[19] M. Rozanski,M。Morawiec,A。Grajcar,S。Stano。修饰的复合相钢的双点激光焊接。金属材料档案2016,第1卷。61,pp。1999–2008。[20] V.I.Gorynin,M.I。 Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Gorynin,M.I。Olenin。 改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。 (在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。 通过选择性激光熔化制造的316L不锈钢的低温机械性能。 材料科学与工程A 2021,815,141317。 [22] M. Morawiec,A。Grajcar。 应用工程信2017,第1卷。 2,pp。Olenin。改善钢和焊接接头的冷耐药性的方法; Crism Prometey:俄罗斯圣彼得堡,2017年。(在俄语)[21] C. Wang,X。Lin,L。Wang,S。Zhang,W。Huang。通过选择性激光熔化制造的316L不锈钢的低温机械性能。材料科学与工程A 2021,815,141317。[22] M. Morawiec,A。Grajcar。应用工程信2017,第1卷。2,pp。多相钢对汽车行业的焊接性的冶金方面。38–42。[23] J. Chen,Z.-Y.刘。低碳5MN – 5NI钢的强度和低温冲击韧性的结合。合金和化合物杂志2020,837,155484。[24] H. Wang,L。Meng,Q。Luo,C。Sun,G。Li,X。Wan。通过焊接热循环的高MN奥氏体钢的高温韧性:晶界演化的作用。材料科学与工程A 2020,第1卷。788,139573。[25] J.C. Lippold,D.J。Kotecki。 焊接冶金和不锈钢的焊接性,第一版。 ;威利:美国新泽西州霍博肯,2005年[26] A. Kalhor,M。Soleimani,H。Mirzadeh,V。Uthaisangsuk。 对双相钢的机械和腐蚀特性的最新进展综述。 民用机械工程档案2020,第1卷。 20,85。 [27] T. Nanda,V。Singh,V。Singh,A。Chakraborty,S。Sharma。 高级高强度钢的第三代:处理路线和属性。 机械工程机构的会议记录,第L部分:材料杂志:设计与应用2016,第1卷。 233,pp。 209–238。 [28] H.L. Groth,J。Pilhagen,R。Vishnu,J.Y。 琼森。 在低温下使用双链不锈钢。 提出韧性温度厚度数据的新方法。 在2017年9月18日至19日,英国伦敦的第五届国际不锈钢国际专家研讨会论文集; pp。 1–8。Kotecki。焊接冶金和不锈钢的焊接性,第一版。;威利:美国新泽西州霍博肯,2005年[26] A. Kalhor,M。Soleimani,H。Mirzadeh,V。Uthaisangsuk。对双相钢的机械和腐蚀特性的最新进展综述。民用机械工程档案2020,第1卷。20,85。[27] T. Nanda,V。Singh,V。Singh,A。Chakraborty,S。Sharma。高级高强度钢的第三代:处理路线和属性。机械工程机构的会议记录,第L部分:材料杂志:设计与应用2016,第1卷。233,pp。209–238。[28] H.L.Groth,J。Pilhagen,R。Vishnu,J.Y。 琼森。 在低温下使用双链不锈钢。 提出韧性温度厚度数据的新方法。 在2017年9月18日至19日,英国伦敦的第五届国际不锈钢国际专家研讨会论文集; pp。 1–8。Groth,J。Pilhagen,R。Vishnu,J.Y。琼森。在低温下使用双链不锈钢。提出韧性温度厚度数据的新方法。在2017年9月18日至19日,英国伦敦的第五届国际不锈钢国际专家研讨会论文集; pp。1–8。[29] N. Fonstein。高级高强度板钢;施普林格:柏林/海德堡,德国,2015年; pp。193–195。[30] M.Y.demeri。高级高强度钢。科学,技术和应用; ASM国际:俄亥俄州材料公园,