本研究通过采用高介电常数电介质材料来提高19nm单栅极MOSFET的性能。通过采用高K电介质材料代替SiO2,可以满足MOSFET器件尺寸缩小趋势的要求。因此,实现了具有不同高K电介质材料的19nm n沟道MOSFET器件,并分析了其性能改进。通过Silvaco TCAD工具中的ATHENA模块进行虚拟制造。同时,使用ATLAS模块利用器件特性。还对上述材料进行了模拟,并与相同结构的传统栅极氧化物SiO2进行了比较。最后,结果证明,氧化钛(TiO2)器件是金属栅极钨硅化物(WSix)组合的最佳介电材料。该器件 (WSix/TiO2) 的驱动电流 (ION) 在阈值电压 (VTH) 为 0.534 V 时为 587.6 µA/um,而预测的目标值为 0.530 V,并且 IOFF 相对较低,为 1.92 pA/µm。该 ION 值符合国际半导体技术路线图 (ITRS) 2013 年对低性能 (LP) 技术预测的最低要求。
重组腺病毒 (rAd) 载体是体内和体外基因转移应用中最常用的载体之一。rAd 基因组在大肠杆菌中构建,在大肠杆菌中,它们的基因组可以以环状质粒或细菌人工染色体的形式保存、繁殖和修改。尽管从环状质粒或杆粒形式中拯救 rAd 的方法已经很成熟,但其初级效率相对较低,阻碍了该技术用于文库应用。为了克服这一障碍,我们测试了一种重建 rAd 的新策略,该策略利用 CRISPR/Cas 机制在转染后在生产细胞内靠近其反向末端重复序列 (ITR) 的位置切割环状 rAd 基因组。这种 CRISPR/Cas 介导的体内末端分辨率可以有效拯救来自不同人类腺病毒 (HAdV) 物种的载体。通过这种方式,不仅可以将病毒拯救的效率提高约 50 倍,而且所提出的方法也比传统的 rAd 重建方法更简单、更快捷。
近年来,电子技术的突破使金属氧化物半导体场效应晶体管 (MOSFET) 的物理特性不断提升,尺寸越来越小,质量和性能也越来越高。因此,生长场效应晶体管 (GFET) 因其优异的材料特性而被推崇为有价值的候选者之一。14 nm 水平双栅极双层石墨烯场效应晶体管 (FET) 采用高 k 和金属栅极,分别由二氧化铪 (HfO 2 ) 和硅化钨 (WSi x ) 组成。Silvaco ATHENA 和 ATLAS 技术计算机辅助设计 (TCAD) 工具用于模拟设计和电气性能,而 Taguchi L9 正交阵列 (OA) 用于优化电气性能。阈值电压 (V TH ) 调整注入剂量、V TH 调整注入能量、源极/漏极 (S/D) 注入剂量和 S/D 注入能量均已作为工艺参数进行了研究,而 V TH 调整倾斜角和 S/D 注入倾斜角已作为噪声因素进行了研究。与优化前的初始结果相比,I OFF 值为 29.579 nA/µm,表明有显著改善。优化技术的结果显示器件性能优异,I OFF 为 28.564 nA/µm,更接近国际半导体技术路线图 (ITRS) 2013 年目标。
DGCIS Directorate General of Commercial Intelligence and Statistics DOC Department of Commerce EXIM Export Import FDI Foreign Direct Investment FEMA Foreign Exchange Management Act FTP Foreign Trade Policy FY Financial Year GATS General Agreement on Trade in Services GATT General Agreement on Tariffs and Trade GDP Gross Domestic Product GST Goods and Services Tax GVA Gross Value Added HSN Harmonized System of Nomenclature ICT Information and Communication Technology INR Indian Rupee IT Information Technology ITRS International Transaction Reporting System MAI Market Access Initiative MDA Market Development Assistance MoC&I Ministry of Commerce and Industry MSITS Manual on Statistics of International Trade in Services 2010 NSDL National Securities Depository Limited OECD Organisation for Economic Co-operation and Development RBI Reserve Bank of India SAC Service Accounting Code SCC Service Classification Code SERF Service Export Reporting Form SEZ Special Economic Zone SFTP Secured File Transfer Protocol STPI Software Technology Parks of India UNCTAD United Nations Conference on Trade and Development USD United States Dollar WTO World Trade Organisation RPG Role-Playing Games
摘要:基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)拼写器因其高信息传输速率(ITR)而受到广泛研究。本文旨在提高SSVEP-BCI在高速拼写方面的实用性。系统从自行开发的专用EEG设备获取脑电图(EEG)数据,并将刺激布置为键盘。对任务相关成分分析(TRCA)空间滤波器进行修改(mTRCA)以进行目标分类,并且在离线分析中与原始TRCA相比表现出明显更高的性能。在在线系统中,利用基于贝叶斯后验概率的动态停止(DS)策略来实现可变的刺激时间。此外,还优化了时间滤波过程和程序以促进在线DS操作。值得注意的是,在线 ITR 平均达到 330.4 ± 45.4 比特/分钟,明显高于固定停止 (FS) 策略,峰值 420.2 比特/分钟是迄今为止使用 SSVEP-BCI 的最高在线拼写 ITR。所提出的系统具有便携式 EEG 采集、友好的交互和可变的命令输出时间,为基于 SSVEP 的 BCI 提供了更大的灵活性,并有望实现实际的高速拼写。
背景升级(DeLandistrogene moxeparvovec-rokl)是重组基因治疗产物,由非复制,重组,腺相关病毒(AAV)血清型RH74(AAVRH74)(AAVRH74)capsid capsid和ssdna表达cassetter cassetter cassetter farank farank flank farank farank farank canverne cassever2 rank farank farank farank canverne cassever2。盒式盒包含:1)MHCK7基因调节成分,其中包括肌酸激酶7启动子和α-肌动蛋白重链增强剂,以及2)编码工程化的levetidys微型疾病蛋白(1)的DNA转基因。载体/capsid:临床和非临床研究表明骨骼肌细胞中的AAVRH74血清型转导。此外,在非临床研究中,在心脏和diaphragm肌肉细胞中已经证明了AAVRH74血清型转导(1)。启动子:MHCK7启动子/增强子驱动转基因表达,并已在动物模型中显示,以驱动转基因升降机微肌营养蛋白蛋白表达,主要在骨骼肌(包括diaphragragm)和心脏肌肉中。在临床研究中,肌肉活检分析已经证实了骨骼肌中的levidys微肌营养蛋白表达(1)。转基因:DMD是由DMD基因突变引起的,导致缺乏功能性肌营养不良蛋白。leviDys携带一个编码微肺炎蛋白的转基因,该蛋白由正常肌肉细胞中表达的肌营养不良蛋白的选定结构域组成(1)。
背景:最近,我们利用并发的P300和稳态视觉诱发电位(SSVEP)特征(也称为混合特征)实现了具有大指令集的高速脑机接口(BCI)系统。然而,如何为所提出的BCI系统选择刺激间隔(ISI)以平衡编码效率和解码性能仍不清楚。新方法:本研究开发了一个6 * 9混合P300-SSVEP BCI系统,并研究了一系列ISI,范围从-175 – 0 ms,步长为25 ms。从几个方面分析了ISI对混合特征的影响,包括诱发特征的幅度、分类准确性、信息传输速率(ITR)。招募了12名天真的受试者进行实验。结果:结果表明ISI因素对混合特征有显著影响。具体而言,随着ISI值的降低,诱发特征的幅度和准确性逐渐降低,而ITR迅速增加。当ISI等于-175 ms时,达到了最高的ITR 158.50 bits/min。与现有方法的比较:与前文研究中使用的ISI相比,本研究中的最佳ISI取得了更好的性能。结论:ISI对P300-SSVEP BCI系统有重要影响,本研究中其最优值为-175 ms,这对于未来开发具有更大指令集的高速BCI系统具有重要意义。
ene编辑提供了临床验证的潜力,可以治疗多种遗传疾病,而这些遗传疾病几乎没有治疗方法。由于通过基因编辑对大多数遗传疾病的研究和治疗需要在体内进行编辑,因此在临床上相关的方法,可以在哺乳动物1中有效地传递精确基因编辑剂到组织中的有效递送,而2继续在进步中发挥关键作用。腺相关病毒(AAV)已用于在人类疾病3,4的动物模型3中输送许多编码许多治疗蛋白的基因。AAV已成为一种人口递送方法,其靶向各种临床相关的组织以及相对良好的安全性和有利的安全性。基础编辑器8,9在体外和人类遗传疾病的动物模型中,有效地安装了针对性的过渡突变1,10。与核酸酶介导的基因编辑不同,碱基编辑不需要双链DNA断裂,因此产生了最小的不需要的indel副产物,染色体易位,染色体易位11,染色体非整倍型12,大deletions 13,14,p53激活15,16和Chromothripsis 17。基本编辑器最近进入临床试验,通常太大而无法适应单个AAV,该AAV的货物尺寸限制约为4.7 kb,不包括倒置的终端重复序列(ITRS)18,19。除了基本编辑器本身外,提供基本编辑器的AAV还必须包括指导RNA,启动器驱动基本编辑器和单个指南RNA表达以及顺式调节元素。
摘要:稳态视觉诱发电位 (SSVEP) 因其稳健性、大量命令、高分类准确率和信息传输率 (ITR) 等优点,被广泛应用于开发脑机接口 (BCI)。然而,同时使用多个闪烁刺激往往会导致用户感到非常不适、疲倦、烦恼和疲劳。在这里,我们建议使用脑电图 (EEG) 和基于视频的眼动追踪来设计一种刺激响应混合拼写器,以提高用户在面对大量同时闪烁的刺激时的舒适度。有趣的是,基于典型相关分析 (CCA) 的框架可用于识别闪烁信号持续时间为 1 秒的目标频率。我们提出的 BCI 拼写器仅使用六个频率来对 48 个目标进行分类,从而大大提高了 ITR,而基本的 SSVEP BCI 拼写器使用的频率数量与目标数量相同。使用此拼写器,我们在提示拼写任务中获得了 90.35 ± 3.597% 的平均分类准确率,平均 ITR 为 184.06 ± 12.761 比特/分钟,在自由拼写任务中获得了 190.73 ± 17.849 比特/分钟。因此,我们提出的拼写器在目标分类、分类准确率和 ITR 方面优于其他拼写器,同时产生的疲劳、烦人、疲倦和不适感更少。我们提出的混合眼动追踪和基于 SSVEP BCI 的系统最终将实现真正的高速通信通道。
纳米级界面能量耦合的重要性日益凸显,这与微纳电子学的快速发展相一致。纳米级界面热阻 (ITR) 受温度影响很大,但由于纳米级表征的极端挑战,迄今为止人们对其了解甚少。这项工作报告了一项开创性的高水平研究,研究了温度如何影响横向尺寸 < 8 纳米的单壁碳纳米管 (SWCNT)-SiO 2 界面的 ITR。从 297 到 77 K,ITR 从 530 增加到 725 到 (1.56 – 1.74) × 10 4 K ⋅ m ⋅ W − 1。报道的室温下 ITR 与 SWCNT/SiO 2 界面的数据一致。将 ITR 随温度的变化与基于声子漫射失配模型 (DMM) 的预测进行了比较。然而,在线性色散的德拜近似下,DMM 低估了 ITR,因此观察到了很好的定性一致性。我们对温度的 ITR 依赖性采取 T − n 的形式,其中对于样品的两个不同位置,n 分别为 2.4 和 2.56。这种观察结果类似于远低于德拜温度时比热对温度的依赖性。我们引入了一个称为有效界面能量传输速度 (vi,eff) 的概念,试图排除比热在 ITR 温度依赖性中的作用,以揭示温度对界面能量耦合的固有影响。非常有趣的是,对于报告的各种界面,vi,eff 在很宽的温度范围内变化很小。预计在未来的研究工作中将进一步探索和完善这一概念。