通过功率循环测试对使用改进的互连技术的最新标准双功率模块进行老化调查 Yi Zhang a,* 、Rui Wu b 、F. Iannuzzo a 、Huai Wang aa AAU Energy,奥尔堡大学,丹麦奥尔堡 b Vestas Wind Systems A/S,丹麦奥胡斯 摘要 为硅和碳化硅设备开发了最新标准“新型双”功率模块,以满足高可靠性和高温电力电子应用日益增长的需求。由于新封装刚刚开始投放市场,其可靠性性能尚未得到充分研究。本文研究了基于新封装的 1.7 kV/1.8 kA IGBT 功率模块的功率循环能力。对功率循环前后的电气和热性能都进行了研究。在 Δ T j = 100 K 和 T jmax = 150 ° C 的条件下经过 120 万次循环后,芯片和键合线均没有明显的性能下降。尽管如此,在测试环境中,在约 600 k 次循环后,已达到导通电压 (V ce ) 增加的寿命终止标准。进一步的扫描声学显微镜测试发现,疲劳位置从传统的近芯片互连(例如,键合线剥离)转移到直接键合铜 (DBC) 基板和底板层。考虑到新封装的循环寿命是传统功率模块的十倍以上,预计随着互连技术的进一步改进,热机械疲劳将不再是限制寿命的机制。同时,随着先前的瓶颈(例如,键合线)得到解决,一些新的疲劳机制(例如,DBC 的分层)在新封装中变得明显。
2024 IECC 将使用新的标准框架 任命委员会和小组委员会 各方均可提交代码变更提案 小组委员会审查提案并向全体委员会提出建议 委员会发布代码草案以征求公众意见 委员会采纳反馈意见 - 投票并批准最终代码
a 加拿大多伦多大学家庭医生航空集团,加拿大多伦多 b 诺华制药公司,新泽西州东汉诺威 c 加拿大不列颠哥伦比亚大学医学系呼吸医学分部,不列颠哥伦比亚省温哥华 d 马萨诸塞州剑桥诺华生物医学研究所 e 荷兰格罗宁根全科医师研究所 f 格罗宁根大学,格罗宁根大学医学中心,GRIAC 研究所,荷兰格罗宁根 g 新加坡观察与实用研究所,新加坡 h 约阿尼纳大学医学院呼吸医学系,希腊约阿尼纳 i 新加坡观察与实用研究所,新加坡 j 阿伯丁大学应用健康科学部学术初级保健中心,英国阿伯丁 k 悉尼大学伍尔科克医学研究所,澳大利亚新南威尔士州悉尼 l 克里特岛大学医学院社会医学系,希腊伊拉克利翁 m 医学系,肺部和重症监护医学,吉森和马尔堡大学医学中心,菲利普斯马尔堡大学,德国肺研究中心 (DZL) 成员,德国马尔堡,诺华制药公司,瑞士巴塞尔 本研究的医学写作由诺华制药公司资助。利益冲突:A. Kaplan 是阿斯利康、贝林、勃林格殷格翰、Covis、Griffols、葛兰素史克 (GSK)、默克 Frosst、辉瑞、诺华、NovoNordisk、Teva 和 Trudel 的医学顾问或发言人。H. Cao 是新泽西州东汉诺威诺华制药公司的员工。J. M. FitzGerald 因参加诺华公司的顾问委员会和演讲局活动而获得个人费用,不列颠哥伦比亚大学也从诺华公司获得了研究资金。N. Iannotti 和 E. Yang 是马萨诸塞州剑桥市诺华生物医学研究所的员工。J. W. H. Kocks 自述获得阿斯利康、勃林格殷格翰、Chiesi Pharmaceuticals、葛兰素史克、诺华、Mundipharma 和 Teva 的资助、个人费用和非财务支持,并持有全科医生研究所 72.5% 的股份。K. Kostikas 曾获得阿斯利康、勃林格殷格翰、Chiesi、ELPEN、GSK、美纳里尼、诺华、NuvoAir 和 Sano 的资助、个人费用和非财务支持,并且曾是诺华制药公司的员工和股东(截至 2018 年 10 月 31 日)。D. Price 是安进、阿斯利康、勃林格殷格翰、Chiesi、Circassia、Mylan、Mundipharma、诺华、再生元制药、Sano Genzyme、Teva Pharmaceuticals 和 Thermo Fisher 的董事会成员,并与安进、阿斯利康、勃林格殷格翰、Chiesi、葛兰素史克、Mylan、Mundipharma、诺华、辉瑞、Teva 签订了咨询协议
Y. Duan、F. Iannuzzo 和 F. Blaabjerg,“一种用于功率半导体器件的新型集中电荷建模方法”,IEEE 电力电子学报,2020 年 4 月 ♦ Y. Chang、H. Luo 和 F. Iannuzzo、A. Garcia-Bediaga、W. Li、X. He、F. Blaabjerg,“具有低杂散电感和平衡热应力的紧凑型夹层压装 SiC 功率模块”,IEEE 电力电子学报,2020 年 3 月 ♦ PD Reigosa、H. Luo 和 F. Iannuzzo,“通过功率循环老化对 1.2 kV SiC MOSFET 短路稳定性的影响”,IEEE 电力电子学报,2019 年 11 月 ♦ L. Ceccarelli、RM Kotecha、AS Bahman、F. Iannuzzo 和 HA Mantooth, “使用多步条件映射仿真策略基于任务概况的 SiC MOSFET 功率模块寿命预测”,IEEE 电力电子学报,2019 年 10 月。
伊恩·亨特 (Ian Hunter) 教授是机械工程系的 Hatsopoulos 教授,并负责麻省理工学院的生物仪器实验室 ( http://bioinstrumentation.mit.edu )。伊恩出生于新西兰,自小就对科学、工程和仪器感兴趣,这种兴趣一直持续到现在。他 9 岁时就创办了自己的第一家公司,10 岁时就发表了第一篇论文(一种微型单晶体管收音机的设计),14 岁时就建造了一个功能齐全的气液色谱仪(氢火焰离子化型),用于化学分析。从奥克兰大学获得学士、硕士和博士学位后,他在加拿大麦吉尔大学生物医学工程系完成了博士后研究。随后,他加入麦吉尔大学任教,并晋升为生物医学工程系终身副教授。1994 年,伊恩将他的实验室搬到了麻省理工学院机械工程系。他的主要研究领域是仪器仪表、微型机器人、医疗设备和仿生材料。多年来,他和他的学生开发了许多仪器和设备,包括:共聚焦激光显微镜、扫描隧道电子显微镜、微型质谱仪、新型拉曼光谱、无针药物输送技术、纳米和微型机器人、微型手术机器人、机器人内窥镜、高性能洛伦兹力马达以及用于大规模并行化学和生物测定的微阵列技术。作为其研究成果,Ian 发表了 500 多篇出版物。他还根据这项研究发明了仪器和设备。这已导致 150 多项已颁发和正在申请的专利。最后,Ian 的发明已被众多公司使用,此外,他还创立或共同创立了 25 多家公司。伊恩热爱教学,曾获得麻省理工学院多项教学奖项,包括基南本科教育创新奖、阿玛尔博斯教学卓越奖和丹哈托格杰出教育家奖。
估计此次信息收集的公共报告负担平均为每份回应 1 小时,包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查信息收集的时间。请将有关此负担估计或本次信息收集任何其他方面的评论(包括减轻负担的建议)发送至国防部华盛顿总部服务处信息行动和报告局 (0704-0188),1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302。受访者应注意,尽管法律有任何其他规定,但如果信息收集未显示当前有效的 OMB 控制编号,则任何人均不会因未遵守信息收集而受到任何处罚。请不要将您的表格寄回上述地址。1.报告日期 (DD-MM-YYYY) 2.报告类型 3.涵盖日期 (从 - 到)
• 四个大都市地方当局的独特子区域,构成西米德兰兹郡都市圈的西北部分。 • 拥有 110 万人口和 44 万户家庭……并且还在不断增长。 • 拥有 36,000 家企业,总增加值达 170 亿英镑,雇用 440,000 名员工。 • 但……工业萎缩的遗留问题和严重的经济和社会压力集中。 • 发展可行性是一项重大挑战
讲座 7 讲座 8 早期教会的迫害 (7) 君士坦丁的信仰?教会的黄金时代 君士坦丁的皈依 (8) 杰罗姆和武加大圣经 金口圣约翰;安布罗斯
未发现错误,重新测试成功,无法重复或未发现错误?迈向标准化分类法 Khan, S; Phillips, Paul; Hockley, Chris 和 Jennions, Ian 论文存放于 Curve 2015 年 5 月 原始引用:Khan, S. , Phillips, Paul , Hockley, Chris 和 Jennions, Ian (2012)“未发现错误,重新测试成功,无法重复或未发现错误?迈向标准化分类法”在第一届全寿命工程服务会议上(第 246-253 页)。EPSRC 创新制造中心版权 © 和道德权利归作者和/或其他版权所有者所有。可以下载副本用于个人非商业研究或学习,无需事先许可或收费。未经版权所有者事先书面许可,不得复制或大量引用本项目。未经版权所有者的正式许可,不得以任何方式更改内容或以任何格式或媒体进行商业销售。
摘要一氧化氮是由L-精氨酸形成的,在调节血压,抑制血小板聚集和动脉粥样硬化的起源方面起着基本作用。大多数研究表明,补充L-精氨酸的有益作用与一氧化氮对细胞的生物利用度更大,改善内皮功能障碍,减少氧化应激,血脂异常和胰岛素抵抗。但是,一些研究表明结果矛盾。考虑到内皮在DCV和内分泌代谢疾病的疗法发生中的重要性,该修订将着重于描述分子生产机制及其信号通路在控制血管功能中。主要的结果还将在使用口服L-精氨酸补充或不运动的临床试验中解决,以促进对心血管和内分泌 - 代谢系统,患者和健康个体的有益影响。