该项目包括在道路的两侧建造一条新的两车道铺装道路。建造拟议的道路将需要在路径上进行分级和压实土壤,并在道路的两侧永久铺设沥青道路和混凝土多用途路径。拟议的道路将导致BPA行内约8,000平方英尺(0.18英亩)的永久影响。将沿拟议道路的东南侧放置一个联合公用沟槽,导致400平方英尺的临时撞击。公用设施的沟槽将大约四英尺深,四英尺宽,导致400平方英尺的临时撞击。将在拟议道路的北部建造一个雨水设施,其中大部分设施都在BPA费用的行之外建造。将在该行中建造约7,000平方英尺(0.16英亩),最大挖掘深度为6英尺。雨水设施需要从新的不透水表面处理雨水径流。分级和挖掘的土壤将用于回填和/或处置异地。该项目需要使用自卸车,挖掘机,平板拖车,现成的混合卡车和沥青铺路设备。调查结果:根据《能源部(DOE)国家环境政策法》(NEPA)条例的第1021.410(b)条(57 FR 15144,4月,24,1992,在61 FR 36221-36243,Jul。9,1996; 61 FR 64608,1996年12月6日,76 FR 63764,2011年11月14日),BPA确定了拟议的诉讼:
摘要:冰的形成仍然是气候模型中代表最差的微物理过程之一。虽然已知主要的冰生产(PIP)参数化对建模的云特性具有很大的影响,但次级冰产生(SIP)的表示不完整,因此其相应的影响在很大程度上是毫无疑问的。此外,冰的聚集是总云冰预算的另一个重要过程,这在很大程度上也不受限。在这项研究中,我们使用挪威地球系统模型(Noresm2)研究了PIP,SIP和ICE聚集对北极云的影响。具有预后和诊断PIP的模拟表明,仅异质冻结不能再现观察到的云冰含量。Noresm2中缺失的SIP机制(胶水分解,掉落和升华分解)的实施可改善建模的冰属性,而液体含量中的图案仅在预后PIP的模拟中发生。但是,结果对碰撞分裂的描述很敏感。这种机制在所检查的条件下占主导地位,对升华校正因子的治疗非常敏感,升华校正因子的治疗是一种受使用的参数的约束参数。最后,冰聚集处理的变化也可以显着影响云特性,这主要是由于它们对碰撞分手效率的影响。总体而言,通过添加SIP机制来增强冰产量和冰聚集的减少(与浅北极云的雷达观察一致)导致云层覆盖率和降低TOA辐射偏见,与卫星测量相比,尤其是在寒冷的月份。
摘要:参与耦合模型比较项目(CMIP)的模型表现出北极海冰气候的巨大偏见,这似乎与季节性大气和海洋循环中的偏见有关。使用1979年至2014年的34个CMIP6模型的历史运行,我们研究了9月的气候海冰浓度(SIC)偏见与大气和海洋模型气候之间的联系。9月SIC的主要模型传播由两个领先的EOF很好地描述,共同解释了。其65%的差异。第一个EOF代表整个北极中SIC的低估或高估,而第二个EOF描述了大西洋和PACIFIC部门的SIC偏见相反。回归分析表明,这两种SIC模式与夏季期间北极表面热孔的偏离密切相关,主要是短波和长波辐射,而传入的大西洋水则在大西洋部门发挥了作用。与夏季云覆盖,低级湿度,对流层温度/循环以及海洋变量的局部和全球联系。如三种气候模型所示,在北极在模型中与SIC偏差的局部关系大多相似,但显示出不同程度的大西洋流动影响。在全球范围内,建议在9月的夏季大气循环中对三种模型之一提出了强烈的影响,而大气影响主要是通过其他两个模型的热动力学。在其中一种模型中可以看到与北大西洋循环的明确联系。
尊重。任何 AI 部署都将尊重所有受影响实体和个人的隐私、财产、法律和人权。• 我们将采取合理措施确保我们利用的任何模型或 AI 技术都尊重用于训练该技术的数据的版权和合同义务。• 我们将在任何 AI 应用中应用有关个人隐私的行业标准。• 我们将遵守所有适用法律,并努力确保我们的原则和方法符合任何适用的行业标准。• 我们不会在未经同意的情况下与第三方共享客户数据,也不会在模型中使用客户数据,除非能够防止在及时响应中发生重大披露
摘要糖尿病(DM)包括一系列代谢性疾病,带有3C型DM,也称为胰腺生成性糖尿病,是胰腺疾病的继发性。尽管其流行率,但由于与I型和II型DM的重叠症状,3C DM型的诊断不足,使分化过程变得复杂。该病例报告的特色是一名53岁的男性患者,在过去的两天中提出上腹痛的抱怨。该患者是慢性胰腺炎的已知病例,血糖,脂肪酶和肝酶水平升高,在过去10年中的体重减轻约为15 kg。ct腹部提示慢性钙化胰腺炎,有多个导管内结石和轻度的中央肝内胆道芽孢杆菌扩张和轻度扩张的普通胆管。从上述证据中,该患者被诊断为3C糖尿病型糖尿病,最初被误诊为2型DM,常见胆管(CBD)和慢性钙化胰腺炎的良性胆道狭窄。患者用胰岛素和二甲双胍治疗高血糖状态。对于慢性胰腺炎,进行了ERCP并放置了一个支架。标准化诊断标准和医疗保健提供者之间的意识提高是改善这种经常被忽视的糖尿病形式的诊断和管理的重要步骤。
西里西亚技术大学电气工程学院(1),西里西亚技术大学,电动驱动器和机器人技术系(2),orcid:1。0000-0002-6185-7935; 2。无,3。0000-0002-2508-1893,4。0000-0002-4279-0472 doi:10.15199/48.2024.10.05确定高温超导体磁带1G摘要中临界电流和C的角度依赖性。本文介绍了第一代高温率超导体磁带(HTS)中临界电流的角度依赖性的理论和角度依赖性。研究重点是分析磁场值和方向对临界电流的影响。这项工作还描述了使用Halbach配置中的Neododmium Magnets进行特殊设计的测试台的构建和操作,该磁铁可实现HTS磁带的准确测量和表征。研究结果确认了符合KIM模型,并允许开发关键电流密度模型,该模型可用于进一步的计算机模拟。摘要。本文介绍了第一代临界电流的角度依赖性的疗法和测量角度依赖性。研究着重于磁场对临界电流的价值和方向的影响。本文还描述了使用Halbach配置中使用neododmium磁铁设计的特殊设计站的构建和操作,该测试站允许对HTS磁带进行精确的措施和表征。结果证实了KIM模型的一致性,并有助于开发关键的当前Delsity模型,该模型可用于进一步的计算机模拟。(在高体质超导胶带中确定临界电流IC的角度依赖性1G)关键字:临界电流,高温超导体磁带,bisccco,anisotropia。关键字:临界电流,高电流超导胶带,Biscco,各向异性。高温入院超导录像带(HTS)用于许多电力行业应用,例如变压器,电力限制器和电缆[1-2]。设计这些设备中的每一个都需要了解外部因素对HTS磁带参数的影响。尤其涉及临界场的影响,例如温度-T c,磁场-b c和临界电流密度-JC。使用HTS磁带设计超导体设备的关键参数是确定适当的工作点。这是由于可能在许多限制的同时最大程度地使用超导材料。对增加设备功率密度的可能性的限制之一是临界电流的值以及HTS磁带相对于外场线的位置的影响。这是由于所有设备在某些条件下运行的事实,并且有必要考虑到您自己的领域与运输电流流有关的影响,而且还要考虑到所有外部场。临界电流的值取决于磁感应的值(B)和相对于HTS胶带的磁场力线的方向。您可以同时使用Kim(1)和各向异性磁铁(2)Magneto模型来确定这些依赖性[3-4]。
米切尔·布什克(Mitchell Bushuk),位于撒哈拉阿里(Sahara Ali),b david A. Bailey,C Qing Bao,D LaurianeBatté,E Uma S. Bhatt,E Edward Blanchard-Wrigestworth,G Ed Blockley,G Ed Blockley,Hgavin Cawley,Hgavin Cawley,i Junhaw Goulet I. Culllet Richlet I. Cullath,M,M,Kk Francis Dirkis X. diberial Exracu,QMaximilianGöbel,R William Gregory,S Virgini Guemas,T Lawrence Hamilton,U Bean He,D Senifer E. Caya,Uther,Uther,Elliot Kim,M Noriaki Kimura,N Dmitry Condrashov,Y Zachary M. CCED WISED LIN,DD YU’MASSONNET,GG WALTER N. pp Steefen Titsche, qq Michel Tsamadus, rr Keguang Wang, ss Jianwu Wang, b Wonqi Whee Yigo Wang, c Younghua, dad James Williams, bolun Yag, dedd Zhang, n and Youngfei Zhang s
米切尔·布什克(Mitchell Bushuk),位于撒哈拉阿里(Sahara Ali),b david A. Bailey,C Qing Bao,D LaurianeBatté,E Uma S. Bhatt,E Edward Blanchard-Wrigestworth,G Ed Blockley,G Ed Blockley,Hgavin Cawley,Hgavin Cawley,i Junhaw Goulet I. Culllet Richlet I. Cullath,M,M,Kk Francis Dirkis X. diberial Exracu,QMaximilianGöbel,R William Gregory,S Virgini Guemas,T Lawrence Hamilton,U Bean He,D Senifer E. Caya,Uther,Uther,Elliot Kim,M Noriaki Kimura,N Dmitry Condrashov,Y Zachary M. CCED WISED LIN,DD YU’MASSONNET,GG WALTER N. pp Steefen Titsche, qq Michel Tsamadus, rr Keguang Wang, ss Jianwu Wang, b Wonqi Whee Yigo Wang, c Younghua, dad James Williams, bolun Yag, dedd Zhang, n and Youngfei Zhang s
