摘要 1967 年,类型同一理论被许多哲学家抛弃,因为希拉里·普特南提出的多重可实现性反对意见似乎是致命的。本文深入探讨了对类型同一理论的批判,从而为引入一种替代性的心智理论:突现主义铺平了道路。长期以来,围绕心灵的哲学论述一直被古典物理主义和二元论的二元对立所主导。然而,科学发现对当代思想的影响引发了人们越来越倾向于还原物理主义框架,目的是与科学方法保持一致。因此,当代思想家开始探索新的物理主义思想。本文探讨了所有还原物理主义理论中固有的挑战,揭示了它们的局限性,并提出了克服障碍的潜在解决方案。这种分析表明,类型同一理论与其还原理论类似,无法适应意识的不可还原性。这就是托马斯·内格尔 (Thomas Nagel) 的“它与什么相似”的体验所表征的意识,它本质上是主观的。相反,本文认为,尽管涌现论是一种物理主义理论,但它提供了一种令人信服的替代方案。它假设意识是一种高阶现象,超越了对其组成部分的还原。我认为,涌现论的这一属性使其成为对思想和意识的持续探索中一个有前途的理论。
糖尿病性视网膜病(DR)是糖尿病(DM)普遍的微血管并发症(DM),在大约三分之一的糖尿病患者中有助于视觉障碍(1)。它是糖尿病最严重的并发症之一,尤其是在发展到增殖性糖尿病性视网膜病(PDR)时(2,3)。PDR的特征是视网膜中血管异常的生长,导致视力丧失和失明的潜力(4)。向PDR过渡的基础的复杂分子机制仍然是强烈的研究意义的主题。了解与PDR相关的基因表达模式和免疫景观对于揭示其发病机理的复杂性并识别潜在的治疗靶标至关重要。内质网(ER)用作负责蛋白质稳态或“蛋白质稳态”的细胞细胞器(5)。细胞应激和炎症可能会导致构建不折叠或错误折叠的蛋白质,这种疾病称为ER应激(6)。促成PDR发病机理的基本分子机制之一是ER应力(7)。尽管在PDR中,ER应力具有公认的重要性,但在PDR背景下,对与ER应力相关的生物标志物的全面分子理解仍然是显着的研究差距(8-10)。近年来,对与ER应力相关生物标志物的复杂性的分子研究为理解PDR的分子基础提供了有希望的途径(5、11、12)。高通量技术的进步已彻底改变了我们剖析复杂疾病分子景观的能力(13)。与PDR中的ER应力相关的特定生物分子特征,不仅具有加深我们对疾病机制的理解的潜力,而且还具有确定治疗性干预的精确靶标。尽管在糖尿病研究中取得了重大的进步,但我们对驱动PDR进展的特定分子事件的理解仍然存在差距。通过分析GSE102485数据集中的PDR患者样品的转录组预计和正常样品,我们研究了与PDR中的ER应力相关的差异表达基因(DEGS)。通过基因本体论(GO)富集分析,基因和基因组(KEGG)途径分析的京都百科全书和蛋白质 - 蛋白质相互作用(PPI)网络分析,我们的目标是增强我们对eRECTORCONT PRESSTAINS PRESATION IN pDR的ERCORECTONCOULAL生物标志物的分子特征。通过字符串,细胞尺度和细胞胡示使鉴定了六个关键基因,并在单独的数据集(GSE60436)和DR模型中使用体外定量实时聚合酶链反应(QRT-PCR)进行了进一步验证。此外,我们探索了这些中心基因与插入中免疫细胞水平之间的相关性,揭示了ER应力在PDR中的免疫调节作用。最后,使用连接图(CMAP)预测用于处理PDR的潜在小分子。该分析的目的是鉴定具有潜在治疗作用的药物,可以通过调节与ER应力相关的分子途径来干预PDR的发展。这项研究桥接了分子生物学和DR研究,旨在剖析指示PDR和SHED
- 有关此主题的查询 - Idemitsu Kosan Co.,Ltd。,公共关系部公共关系部门
通讯作者:shahabbayatzadeh@gmail.com https://doi.org/10.22105/mrpe.2025.499771.1137 被许可人。绩效评估的现代研究。本文为开放获取文章,根据知识共享署名 (CC BY) 许可条款和条件分发(http://creativecommons.org/licenses/by/4.0)。
mung bean是一种重要的经济作物,被认为是一种植物蛋白成分含量较高的作物,被视为蔬菜和谷物。在各种与产量相关的性状中,一百种种子重量(HSW)对于确定绿豆的产生至关重要。这项研究采用了200条线的重组植物线(RIL)人群,这些线群是通过全基因组重新取代进行基因分型的,以在四个环境中鉴定出HSW相关的定量性状基因座(QTL)。我们识别了HSW的5个QTL,每个QTL都解释了2.46 - 26.15%的表型差异。其中,QHSW1在所有四个环境中均在1号染色体上映射,解释了表型变化的16.65-26.15%。精细的映射和基于地图的克隆程序,以及重组的后代测试,有助于将QHSW1的候选间隔缩小到506 kb。QHSW1基因组间隔和与QHSW1紧密联系的标记的这种识别对于改善种子重量较高的绿豆品种的繁殖工作可能是有价值的。
4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。
直接对人类胚胎进行基因改造是否会影响未来人的福祉?斯帕罗回答这个问题的方法违背了生物伦理学的一个核心目标:产生能够在研究、临床环境或公共政策中产生实际影响的观点。斯帕罗没有参与提供以经验为基础的人类身份描述的研究,而是不加批判地采用了帕菲特众所周知的两种基因干预类型的区分:“影响个人”和“影响身份”。这种区别对斯帕罗 (2022) 来说至关重要。鉴于对未来人的预期福利的合理关注,它允许他决定干预者是否对结果负有道德责任。影响个人的干预就是这种情况,因为只有在这种情况下,未来的人才会从干预中受益或遭受伤害。相比之下,目前通过 CRISPR 实现的体细胞或生殖细胞编辑通常涉及某种形式的选择——通过体外受精、体外胚胎核移植或植入前遗传学诊断——在植入妊娠母亲子宫之前选择“最佳孩子”。选择会影响身份,因为它会改变受孕时间,从而
在这项研究中,Points Consulting (PC) 致力于估计如果俄勒冈州南部和东部被并入爱达荷州,其经济将如何变化。我们的兴趣不在于探索社会或政治影响,而在于经济影响。图 1 显示了感兴趣的区域,此后称为转换县。对于这项研究,PC 依赖于 CGI 确定的边界选择,包括三个县(Wasco、Jefferson 和 Deschutes)的部分,如图 1 所示。只要有可能,PC 就会发布针对 22 个转换县的估计值,在这些情况下,部分县的数据已向下调整以考虑这些县的相关部分。然而,可用数据的限制并不总是允许对县进行特定级别的分解。
糖基化在包括糖尿病在内的蛋白质功能和疾病进展中起着至关重要的作用。这项研究进行了全面的糖蛋白分析,比较了健康的志愿者(HV)和DM样品,并鉴定出19,374肽和2,113种蛋白质,其中11104种是糖基化的。总共将287种不同的聚糖映射到3,722个糖基化的肽,揭示了HV和DM样品之间糖基化模式的显着差异。统计分析确定了29个显着改变糖基化位点,在DM中上调了23个,在DM中下调了6个。值得注意的是,在DM中,在Prosaposin的位置215处的Glycan HexNAC(2)Hex(2)FUC(1)在DM中显着上调,标志着其首次报道的与糖尿病的关联。机器学习模型,尤其是支持向量机(SVM)和广义线性模型(GLM),在基于糖基化特征(Glycans,糖基化蛋白质和糖基化位点)区分HV和DM样品时,可以在区分HV和DM样品时获得高分类精度(〜92%:96%)。这些发现表明,改变的糖基化模式可能是糖尿病相关病理生理和治疗靶向的潜在生物标志物。
摘要 - 基于测量的量子计算(MBQC)是一种强大的技术,依赖于多数纠缠群集状态。要实现一组通用的量子门,因此,MBQC中的任何量子算法,我们都需要按适当的顺序测量群集状态矩阵,然后根据测量结果的进料进行最终校正。在光子量子架构中,Gottesman-Kitaev-Preskill(GKP)Bosonic Continule-Rible-变量(CV)编码是MBQC的绝佳候选者。GKP量子位允许轻松应用纠缠CZ门,用于使用梁拆分器生成资源群集状态。但是,准备高质量,现实,有限的GKP量子量可能是实验中的挑战。因此,可以合理地期望基于GKP的MBQC在群集状态下仅包含少数“良好”质量GKP量子台的实现。相比之下,其他量子位是弱挤压的GKP Qubits,甚至只是挤压真空状态。在本文中,我们分析了一组通用的简历门的性能,当使用不同质量(良好和不良)的GKP量子和挤压真空状态的混合在一起来创建群集状态。通过比较性能,我们确定了群集状态中每个门的关键量子,以实现其MBQC。我们的方法涉及将门的输出与相应的预期输出进行比较。我们介绍了不同栅极实现的逻辑错误率,这是GKP挤压的函数,用于使用Xanadu的草莓田Python库来模拟和确定。索引项 - 基于测量的量子计算,量子连续变量,Gottesman-Kitaev-Preskill Qubits