CEAINES(法国)的研发项目经理 /高级研究员。负责(主要)欧盟和国家项目的协调,管理和实施。负责国际层面的网络和对接,以在太阳能,PV和智能建筑物/城市/网格领域建立联系和合作。太阳能PV和BIPV系统的主要专业知识:性能,O&M,可靠性和诊断,数字化,资产管理和可持续性(循环经济,生态设计)。专家,在三个工作组中积极参与欧盟ETIP PV。专家,积极参与国际能源机构(IEA)的PVP计划,执行13和15的任务。由欧盟授予,是欧洲30个模范研究人员之一(MSCA活动,布鲁塞尔,2017年)。比利时(IMEC/Energyville),挪威(IFE),法国(CNRS)和希腊(Duth)的先前职位。两年参与PV标准化(IEC/Cenelec)。欧盟委员会(DG Grow)对PV的生态设计进行了2年的参与。积极参与了21个国家和国际研发项目(〜28.5 m€)。1份国际专利和40多个出版物,会谈,全体会议,技术报告。
1 .参见 Alan Turing,《计算机器与智能》,59 M IND 236 433, 460 (1950),http://www.jstor.org/stable/2251299?origin=JSTOR-pdf(考虑机器是否能够思考的问题)。2 .参见 Steven Harnad,《思维、机器与图灵:不可区分之不可区分》,9 J.OF L OGIC , L ANGUAGE , & INFO .425 (2000),https://www.jstor.org/stable/40180236?seq=1(将图灵测试描述为对机器是否能够与人类做出不可区分行为的测试)。3 .参见 Max Tegmark,《人工智能的益处与风险》,《未来生命科学技术研究所》,https://futureoflife.org/background/benefits-risks-of-artificial-intelligence/(定义人工智能的一般概念和狭义概念);另请参阅 N AT 。S CI 。& T ECH 。理事会,执行委员会。总统办公室,为人工智能的未来做准备 (2016),第 6 页,https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/micr osites/ostp/NSTC/preparing_for_the_future_of_ai.pdf(提供人工智能概念的替代定义并提出定义人工智能的问题解决方案分类法)。
本研究旨在为一家培训公司 (PT PTC) 制定业务战略,使其作为领先的培训提供商应对 Pertamina 集团市场 (专属) 和非专属市场的竞争。使用 VRIO 分析确定内部业务环境并使用 IFE 矩阵进行评估,而使用波特五力模型确定外部业务环境并使用 EFE 矩阵进行评估。PTC 培训业务部门使用 SWOT 矩阵制定替代业务战略,然后在业务战略实施路线图中进行概述。结果表明,PT PTC 的培训业务部门能够成长和发展,具有良好的内部能力,能够利用优势并尽量减少劣势 (得分 2,570),并且能够很好地应对机遇和威胁 (得分 3,042)。 VRIO分析的结果在SWOT矩阵上获得了4项未来战略制定能力,并获得了市场渗透战略、市场和产品开发形式的9项替代密集战略以及1项横向整合战略,然后使用QSPM进行排序,以形成未来5年内PTC培训业务战略实施的路线图。
确保您至少包括10个外部关键成功因素和10个内部成功因素。将权重分配给每个因素,与EFE和IFE矩阵中的权重相同。这些权重应在与相应因素相邻的列中呈现。接下来,查看阶段2(匹配)矩阵并确定替代策略以进行考虑。将这些策略记录在QSPM的第一行中,并在可能的情况下将它们分组为相互排斥的集。要确定吸引力得分(AS),分别检查每个关键因素,并询问它是否影响策略的选择。如果是的,请根据该因素根据其相对吸引力为每个策略分配分数。评分范围从1(不吸引人)到4(极具吸引力)。如果一个因素没有影响,请使用仪表板( - )。对于每组替代方案,通过将权重乘以每行的分数来计算总吸引力得分。这仅考虑到相邻的临界成功因素,这揭示了每种策略的相对吸引力。最后,通过添加每个策略列的总吸引力得分来计算总的吸引力得分。结果得分表明哪些策略最有吸引力,更高的分数代表了更多理想的选择。这些差异的大小突出了一种策略而不是另一种策略的相对可取性。在开发QSPM涉及主观决策的同时,在团队环境中做出选择可以增强最终决定将使组织受益的可能性。2。3。在战略分析期间的持续辩论和潜在的冲突可能是由于批评家之间的解释和观点的真正差异而发生的。尽管收视率和吸引力得分取决于直观的判断决策。#战略管理概念:战略管理工具,定量战略规划矩阵:本文将定量战略计划矩阵(QSPM)分解为实用术语。它探讨了它的含义,突出显示了QSPM的计划过程,元素和解释,并提供了一个逐步实施的计划以及一个模板开始。#定量战略计划矩阵(QSPM)是顶级管理用于制定营销策略的一种方法。此方法评估了不同的战略选择,确定了其中最有吸引力的选择。它优先考虑最可行的选择,而不是通过分析考虑公司的内部和外部环境。#执行QSPM的过程涉及三个阶段:1。从EFE/IFE矩阵确定主要外部和内部因素(左列)。从TOW,BCG或Space矩阵中识别替代策略(顶行)。分析每个关键成功因素的累积影响以确定相对吸引力。#组织X旨在通过三种选择大大发展其业务:通过购买竞争对手来扩展,通过市场和产品开发改善销售或多样化。
关于在船上安全使用氢的新知识,我们的社会面临着所有部门的气候和环境挑战,海事部门也不例外。在挪威,雄心是刺激海上行业的绿色增长。 挪威海洋管理局(NMA)已参与“海上应用氢和燃料电池”(H2Maritime)的项目,为海上领域的氢和燃料电池的使用有助于研究和建立新的能力。 与使用氢有关的安全问题与常规燃料的安全性不同,需要采取不同的安全措施和障碍。 运营经验,培训材料,操作安全,安全距离和危险区域是一些知识差距。 4年H2-Maritime项目(20219–2023)的主要目标是建立氢混蛋和存储系统的设计标准和操作哲学,以及推进的燃料电池动力系统。 能源技术研究所(IFE)协调并管理了该项目,该项目由挪威研究委员会(80%)和行业合作伙伴资助。 其他参与者包括挪威科学技术大学(NTNU),东南挪威大学(USN),挪威海事管理局(NMA)以及五个行业合作伙伴Equinor,ABB Marine,HAV Design and Solutions,HAV Design and Solutions,UMOE Advanced Composises(UAC)和Vysus Group。 H2 -Maritime项目分为三个工作包(WPS)。 开发了新方法,模型和仿真工具,并用于提供有关与以下方面相关的挑战的更科学和技术洞察力:在挪威,雄心是刺激海上行业的绿色增长。挪威海洋管理局(NMA)已参与“海上应用氢和燃料电池”(H2Maritime)的项目,为海上领域的氢和燃料电池的使用有助于研究和建立新的能力。与使用氢有关的安全问题与常规燃料的安全性不同,需要采取不同的安全措施和障碍。运营经验,培训材料,操作安全,安全距离和危险区域是一些知识差距。4年H2-Maritime项目(20219–2023)的主要目标是建立氢混蛋和存储系统的设计标准和操作哲学,以及推进的燃料电池动力系统。能源技术研究所(IFE)协调并管理了该项目,该项目由挪威研究委员会(80%)和行业合作伙伴资助。其他参与者包括挪威科学技术大学(NTNU),东南挪威大学(USN),挪威海事管理局(NMA)以及五个行业合作伙伴Equinor,ABB Marine,HAV Design and Solutions,HAV Design and Solutions,UMOE Advanced Composises(UAC)和Vysus Group。H2 -Maritime项目分为三个工作包(WPS)。开发了新方法,模型和仿真工具,并用于提供有关与以下方面相关的挑战的更科学和技术洞察力:
摘要 - 小步鞋清洁是一种提供鞋子护理服务员的尝试。在Little Step鞋上清洁的营销过程问题,即使不按照正确的程序和方法进行,导致销售的下降,营销过程非常困难,因此进行的研究与营销组合策略的设计有关,以后可以通过Little Step Shoes使用,以使营销过程顺利进行。在这项研究中,主要数据和次要数据需要,主要数据是来自面试活动的数据和针对Little Step鞋的所有者和客户的市场研究,以及辅助数据是先前的数据,这些数据是由研究人员故意收集的,用于满足研究数据的需求并使用五个强制搬运工进行分析。营销组合设计中使用的方法是SWOT QSPM方法。在使用QSPM方法的营销组合策略的设计中,不能与SWOT方法的帮助分开,IFE(内部评估因子矩阵),EFE(外部评估因子)和IE(内部和外部)矩阵的SWOT矩阵后来将创建一种替代营销策略,该策略可以由Little STEP鞋使用,使用Little STEP鞋使用清洁和携带的Matrix。
西北大学自然和农业科学学院化学和物质科学创新与建模(MASIM)研究重点领域,西北大学自然和农业科学学院,私人袋X2046,MMABATHO 2735,SOUTH AFRISWA,South Africa约翰内斯堡,P.O。 box 17011,多恩方丹校园,约翰内斯堡,2028年,南非,d创新的耐用大楼和基础设施研究中心,汉阳大学 - 大学 - 汉anyangdaehak-ro 55 Hanyang University-roca,sangrok-gu,Sangrok-gu,Ansan-si,Ansan-si,gyeea and foreea and foreea and foreea and foreea and korea and inan and foreea and inan and foreea and fornan of nanynotive,南非大学科学,工程技术,南非1710年,南非f机械工程系,工程学院 Box 800,Al-Riyadh 11421,沙特阿拉伯G化学系,Umm al-Qura大学,Al-Qunfudah大学学院,沙特阿拉伯H h hanyang Universitya,1271 SA 3-DONG,SANROK-GU,SANGROK-GU,ANSAN 426791,KEREASE,韩国,汉any大学 - 大学 - 大学 - 大学 - 大学 -西北大学自然和农业科学学院化学和物质科学创新与建模(MASIM)研究重点领域,西北大学自然和农业科学学院,私人袋X2046,MMABATHO 2735,SOUTH AFRISWA,South Africa约翰内斯堡,P.O。 box 17011,多恩方丹校园,约翰内斯堡,2028年,南非,d创新的耐用大楼和基础设施研究中心,汉阳大学 - 大学 - 汉anyangdaehak-ro 55 Hanyang University-roca,sangrok-gu,Sangrok-gu,Ansan-si,Ansan-si,gyeea and foreea and foreea and foreea and foreea and korea and inan and foreea and inan and foreea and fornan of nanynotive,南非大学科学,工程技术,南非1710年,南非f机械工程系,工程学院 Box 800,Al-Riyadh 11421,沙特阿拉伯G化学系,Umm al-Qura大学,Al-Qunfudah大学学院,沙特阿拉伯H h hanyang Universitya,1271 SA 3-DONG,SANROK-GU,SANGROK-GU,ANSAN 426791,KEREASE,韩国,汉any大学 - 大学 - 大学 - 大学 - 大学 -西北大学自然和农业科学学院化学和物质科学创新与建模(MASIM)研究重点领域,西北大学自然和农业科学学院,私人袋X2046,MMABATHO 2735,SOUTH AFRISWA,South Africa约翰内斯堡,P.O。box 17011,多恩方丹校园,约翰内斯堡,2028年,南非,d创新的耐用大楼和基础设施研究中心,汉阳大学 - 大学 - 汉anyangdaehak-ro 55 Hanyang University-roca,sangrok-gu,Sangrok-gu,Ansan-si,Ansan-si,gyeea and foreea and foreea and foreea and foreea and korea and inan and foreea and inan and foreea and fornan of nanynotive,南非大学科学,工程技术,南非1710年,南非f机械工程系,工程学院Box 800,Al-Riyadh 11421,沙特阿拉伯G化学系,Umm al-Qura大学,Al-Qunfudah大学学院,沙特阿拉伯H h hanyang Universitya,1271 SA 3-DONG,SANROK-GU,SANGROK-GU,ANSAN 426791,KEREASE,韩国,汉any大学 - 大学 - 大学 - 大学 - 大学 -
摘要:在海事领域,有多个关于远程操作自主船舶的研究和开发项目。其中一项举措是当前的创新项目:由挪威研究理事会资助的陆基自主船舶操作 (LOAS)。该项目于 2019 年最后一个季度启动,并将于 2023 年完成。该项目由 Kongsberg Maritime、IFE 和 NTNU 执行。目标是开发和测试远程操作中心 (ROC) 的交互解决方案,以确保安全有效地监控一艘或多艘完全或部分无人驾驶的船舶。本报告为第一个工作包做出了贡献,该工作包旨在概述当前关于自主船舶远程操作的最新技术。在此基础上,报告提出了以下问题:1) 自主船舶的操作如何纳入管理文件?2) 与远程操作中心的人类操作员相关的重要理论概念是什么?3) 海事领域最近和正在进行的与自主船舶相关的研究和开发案例有哪些? 4) 其他领域的远程操作经验是什么?这些问题通过广泛的文献综述得到回答,访问了 100 多个参考文献。主要发现是需要更新和调整现行国际法规,将自主船舶纳入一种操作模式。此外,诸如态势感知之类的概念
模拟闭环地热系统M. Wangen 1,V。Leontidis2,E。HernandezAcevedo 3,V。Harcouët-Menou 3,P。Ungar4 1能量技术研究所(IFE); 2 IFP Energies Nouvelles(IFPEN); 3佛兰芒技术研究所(VITO); 4佛罗伦萨大学(UNIFI)的摘要来自欧盟 - 霍森项目Hocloop的结果,以提出并开发从闭环的深地热能技术资格和开发技术。该项目的第一步是基准测试几种软件工具,以模拟深层同轴钻孔热交换器。然后,该软件已应用于地热系统的设计,该系统可以为大型建筑物或地区供暖提供1 MW热水。模拟表明,当地热梯度为30°C/km时,需要至少3 km深的井,需要3 km的水平段,当热电导率为2 w/m/k的垂直孔周围2 w/m/k时,将产生功率,周围的垂直孔周围为3 w/m/k。模拟在短暂的热瞬变之后,在数十年(可能超过100年)中,功率生产的较大下降。注入温度为30°C,在50年后,输出温度保持在70°C以上,除了最浅的测试良好。
美国所有主要终端使用领域的能源消费均稳步增长,其中电力和天然气增长最快。2017 年全球电力需求增长了 3.1%,其中中国和印度占增长的 70%。自 1950 年以来,美国的发电量增长了 13 倍,2018 年创下了 4% 的增长记录。尽管受新冠疫情影响导致能源需求减少(2019 年至 2020 年下降约 6%),但能源部门脱碳以及实现主权和不受天气影响的能源上网的需求从未如此迫切。惯性聚变能 (IFE) 提供了一种无碳能源的前景,其燃料供应几乎无限。与核裂变不同,聚变发电厂不会产生大量需要长期处置的高放射性核废料。劳伦斯利弗莫尔国家实验室的国家点火装置 (NIF) 最近取得突破,实现了 1.35 MJ 的聚变产量,超过点火所需增益的 70%,表明等离子体燃烧强劲。它将 ICF 和 DT 物理平台推向了聚变点火的门槛。美国的三项主要研究工作围绕驱动内爆和实现所需的高能量密度等离子体条件的三大能源展开: