摘要这项研究研究了来自埃及新山谷的伊利特粘土的潜力,用于去除重金属离子(Cu(ii),Ni(ii),Zn(ii)和Cd(ii)),该粘土通过工业废水通过吸附过程。实验在各种受控条件下评估了吸附行为:不同的金属离子浓度,吸附剂剂量,溶液pH和混合时间(在500 rpm时)。使用傅立叶和纳米粘土的表征采用了傅里叶变换红外光谱(FTIR),扫描电子显微镜(SEM)和传输电子显微镜(TEM)。结果表明,在室温下,Illite和Nanoillite在90分钟内通过室温(25°C)在90分钟内通过dirite和nanoillite迅速吸收。所有研究的金属离子(Cu(II),Ni(ii),Zn(ii)和CD(II))的浓度为3 mg/L。此外,吸附等温度数据建议与二阶动力学模型更好地拟合,这表示吸附机理。最后,伊利石/纳米粘土的有效性通过其在去除现实世界工业废水中的金属离子中的应用来证明,从而大大降低了其浓度。这种方法解决了与重金属污染相关的环境和健康问题。关键字:纳米颗粒;吸附;重金属;动力学等温;伊利特;工业废水1。由于其高效率,易于处理性,众多吸附剂的可用性以及负担能力,通常在所有水处理方法中选择吸附,以去除重金属离子。引言近年来,研究重点是从水溶液[1],离子交换[2],化学沉淀[3],植物渗透[4],超滤,逆渗透和电差异[5]中取出重金属[5]只是迁移分解的重量分泌的多种方法中的几种方法。活化碳是使用最广泛的吸附剂,并以其高金属吸附能力而闻名[7]。尽管活性炭是从废水中消除金属离子的有用工具,但其使用量很高,因此需要添加螯合化学物质以最大程度地提高其有效性,从而提高了治疗成本[8]。在过去的二十年中,寻找负担得起,高效的重金属吸附剂的许多工作。此外,已经检查了几种天然材料和废物的吸附行为[9]。这些材料包括农业副产品,微生物和粘土矿物质[10]。这些研究中的大多数表明,天然货物可以作为重金属吸附剂的功能良好[11]。重金属离子发生在许多工业活动中,这种污染对环境和人类健康构成了严重威胁,因为这些金属是不可生物降解的,有毒的,即使在低浓度下,也进入食物链[12]。重金属在人体中的积累会导致大脑,皮肤,胰腺和心脏病[13,14]。重金属被归类为有毒和致癌,它们能够在组织中积累并引起疾病和疾病(表1)。更重要的是,粘土价格便宜,丰富,广泛并且随时可用。粘土表现出可以去除水污染物(例如化学物质[16,17]和重金属[18])的能力。其他考虑因素是用户友好性,文化可接受性和低维护成本。Illite是一个2:1粘土矿物质,几乎没有层间肿胀的趋势[19]。具有Illite的吸附过程取决于几个因素,包括pH,吸附剂含量,初始吸附浓度,接触时间,温度,粒径和离子强度。在常规方法中,实验是通过系统地改变所研究因素的同时将其他因素持续进行的。主要的好处是,不仅可以评估单个参数的影响,而且可以在给定过程中的相对重要性以及得出两个或多个变量的相互作用的能力[20]。这项研究的目的是将伊利特用作吸附剂,然后准备伊利特nano Illite,然后将其用于工业废水水中的cu(ii),ni(ii),Zn(ii),Zn(ii)和cd(ii)离子。我们详细评估了Illite和Nano Illite的去除性能。等温线和热力学建模。
这项研究的重点是HES-DABA地区的流体夹杂物。微热测量是在从表面静脉收集的石英上进行的,该石英分为两个阶段:液体和蒸气。平均均质化温度范围为150°C至367°C,冰的熔点范围为-0.05°C至-1.14°C,表明纳入溶液由0.1至1.9等方程组成。wt%NaCl。评估热史和热结构以估计形成温度。通过X射线衍射分析选定的样品,以提供地热储层的直接数据;这是必要的,因为地热流体通过它们的相互作用可以改变岩石的组成和特性。主要改变的矿物是石英,方解石,脂肪,附子,赤铁矿,伊利石,蒙脱石和氯酸盐。因此,粘土构成向高温环境的过渡,这是由高温水热改变矿物(例如石英(> 180°C)和epidote(〜250°C)所证明的。
鉴于对Heshui地区低渗透性砂岩储层的特征和控制因子的不可或缺的理解,本研究检查了Chang 2储层的显微镜矿物质和孔结构。它使用一系列方法(包括成像和间接方法)分析了其主要的控制因子。te结果表明,研究区域中张2储层的岩石以岩性的Arkose和Feldspathic碎屑石英砂岩为主。te储层空间会形成毛孔内孔,长石溶解的孔,岩石溶解的孔和晶间孔。有时会发现微裂纹。平均孔隙率为10.5%,平均渗透率为2.2 MD,具有低孔隙率 - 脱透透明度储层。在储层开发过程中,由构造效应产生的小鼻子形成的陷阱为良好的储层空间提供了机会。沉积和成岩过程在一定程度上控制了储层孔隙度的发展程度和方向。多段毛细管压力曲线和较长的缺失区域对应于相对较好的毛孔 - 螺旋式结构。伊利特是决定储层质量的主要成岩粘土矿物。三个效应都为储层的整体发展做出了贡献。
“碳峰值和碳中立性”是一项重要的国家战略,而CO 2的地质储存和利用是当今的热门问题。然而,由于中国纯CO 2的气源的稀缺性以及CO 2捕获的高成本,CO 2 -RICH工业废气(Co 2 -Rich IWG)逐渐逐渐进入公众的目光。co 2在页岩表面上具有良好的吸附特性,但是酸性气体可以与页岩反应,因此Co 2 -Rich Iwg e Water E页岩反应的机理以及储层特性的变化将决定地质存储的稳定性。因此,基于longmaxi形成页岩的矿物质组成,本研究构建了水岩反应的热力学平衡模型,并模拟了Co 2 -Rich IWG和页岩矿物质之间的反应的规律性。反应后,反应后消耗了12%,并且可以完全溶解Co 2 -Rich IWG中的杂质气体,从而证明了通过水E岩石反应处理IWG的可行性。由于IWG抑制了CO 2的溶解,因此CO 2 -RICH IWG的最佳组成为95%CO 2,而CO 2地质存储是主要目标时,IWG的最佳组成为95%CO 2和5%IWG。相比之下,当主要目标是总CO 2 -RICH IWG或杂质气体的地质存储时,最佳CO 2 -RICH IWG组成为50%CO 2和50%IWG。在Co 2 -Rich Iwg e水上页壁反应中,温度对水岩反应的影响较小,而压力是最重要的参数。SO 2对气体中的水岩反应的影响最大。©2023作者。对于矿物质,粘土矿物质(例如伊利石和蒙脱石)对水岩反应具有显着影响。总体反应以降水为主,岩石骨骼的体积增加了0.74 cm 3,导致页岩孔隙率降低,这在某种程度上增强了CO 2地质存储的稳定性。在Co 2 -Rich Iwg E水上页岩之间的反应期间,在模拟温度和压力下,降水是主要反应,页岩孔隙率降低。然而,随着储层水含量的增加,反应将首先溶解然后沉淀,然后再溶解。当水含量小于0.0005 kg或大于0.4 kg时,它将导致储层孔隙率的增加,这最终会降低Co 2 -Rich IWG的长期地质存储稳定性。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。
对空气伽马射线图像作为土壤特性指标的实证研究 - 新南威尔士州沃加沃加。Phil Bierwirth 1 、Paul Gessler 2 和 Dermot McKane 3 1 澳大利亚地质调查组织,邮政信箱 378,堪培拉,ACT 2601 2 CSIRO 土壤部,邮政信箱 639,堪培拉,ACT 2601 3 新南威尔士州土地和水资源保护部,邮政信箱 639,堪培拉,ACT 2601 电子邮件:pbierwir@agso.gov.au,电话:(06)2499231,传真:(06) 2499970 摘要 通过对土壤样本中放射性元素丰度和土壤特性的实证分析,可以评估机载伽马射线图像的信息内容。在地质学、地貌学和土壤发生学的背景下进行解释。结果表明,伽马图像能够绘制土壤特性,如 pH 值、成分/营养物质和质地,但伽马响应通常是矿物、地貌和成土过程的混合。在相对地貌不活跃的地区,钾映射浸出和酸度,而钍定义粘土类型和含量。一般而言,包括不同元素迁移在内的多种影响的混合会阻碍简单的解释。解释模型应包括根据地貌和地质将数据细分为不同领域。简介 本文报告了一项试点研究的重要发现,该研究考察了机载伽马辐射数据作为土壤和土地退化快速测绘工具的效用(Bierwirth,1996 年)。航空伽马光谱法通过测量 K、Th 和 U 放射性衰变产生的伽马射线丰度,提供岩石/土壤层顶部 30-45 厘米的地球化学空间图像,植被的影响很小。在特定的景观中,K、U 和 Th 的空间分布以及 U 和 Th 的衰变产物将取决于物理和化学风化过程 - 与主要矿物有关,这些矿物的风化模式受该地区的地貌状况和气候影响。风、地表冲刷和冲积过程对矿物的物理运输占放射性元素分布的大部分(Martz 和 de Jong,1990 年)。矿物成分发生化学分解后,大多数元素都具有可移动性(可溶解或附着于胶体),具体取决于化学条件,而化学条件又可能与矿物学、地貌年龄和气候因素有关。例如,水解作用会释放出钾长石和云母中的 K +,用于伊利石的形成,吸附到其他粘土上或通过流体迁移去除(Wedepohl,1969 年)。酸性溶液将在风化早期阶段取代 H +,从而有助于 K + 的释放,这最初也可能会增加 pH 值 (Wollast,1967)。因此,空气中检测到的 K 分布的空间模式将取决于土壤的矿物学和年龄(即风化状态)。由于空气中的 U 和 Th 数据分别来自衰变产物 214 Bi 和 208 Tl 产生的伽马辐射,因此了解这些元素的所有母体具有相当长的半衰期的流动性方面非常重要。在铀衰变链中,同位素
地球聚合物是从天然矿物质(粘土),废物或工业副产品的碱性激活获得的低碳粘合剂,以生成具有陶瓷特征的产品[1,2]。铝硅酸盐类型的反应性化合物迅速溶解在碱性溶液中,并形成Si型(OH)4-和Al(OH)4- [3,4]的羟基化低聚物。在多质量反应期间,四面体单元交替结合,形成构成地球聚合物的无定形格子。近年来,随着具有较低能量消耗和强大特性的粘合剂,地质聚合物已引起了很多关注,包括良好的机械性能,低液体渗透性,对高温的抵抗力和其他酸的攻击[5] [5],并大大降低了CO 2排放,更环保友好友好的材料[6 E 9]。高岭土和其他天然粘土,在通过热处理转化为梅托蛋白和钙化粘土后,低钙灰灰是合成地球聚合物的最常见前体[10]。近年来,重点一直放在高可用的原材料上,例如钙化粘土[11,12]。粘土通常由粘土矿物和其他相关的混合物组成[13]。与高岭土不同,粘土的主要缺点用作获得地球聚合物的先驱是组成的变异性和控制热激活过程的参数的控制。常用的粘土被用作地球聚合物前光照器,必须将其钙化以完全脱氢氧化,以避免形成新的稳定相,例如尖晶石[13 E 15]。因此,Buchwald等。在500至800 C之间的粘土矿物质的热激活通常会导致粘土矿物的脱羟基化[16]。其他作者研究了粘土的碱性激活。[17]研究了在550至950 c之间热激活的伊利石/蒙脱石粘土的适用性,形成地球聚合物。Essaidi等。[18]研究了在不同温度下激活的高岭土粘土和富含赤铁矿的伊利石 - 氯化粘土的碱性激活。得出的结论是,由于粘土矿物质的非晶化,Illite-Kaolinitc粘土的反应性优于高岭土粘土的反应性,获得了具有更好的机械性能的材料。Selmani等。[9]评估了两个商业元评估和三个突尼斯粘土,具有不同的化学成分,纯度和反应性,以确定它们用于地球聚合物合成的潜力。用粘土取代梅托氏蛋白,有利于多面反应。所使用的碱性激活剂是强碱性溶液,碱氢氧化物或水合碱硅酸盐。然而,由于需要高于1300℃的温度,因此通过非常昂贵且高度污染的生态过程进行了用作活化剂的碱性硅酸盐的产生,将大量CO 2排入大气中。因此,需要寻找新的替代激活解决方案,而环境和经济影响较小。改善碱性或碱性水泥的经济和生态平衡的一种方法是为传统碱性激活剂找到碱性(总或部分)。近年来,使用生物质来产生热量和电力,以便施加废物并减少CO 2排放