自 20 世纪末以来,雷达技术已得到广泛应用,尤其是在海事和航空领域 [1-3]。雷达技术中最重要的课题之一是在背景噪声中探测隐形目标。另一方面,当前量子技术的发展为远程探测提供了新的可能性,从而产生了量子雷达的概念。本文提出了一种基于光子对之间量子纠缠的量子雷达“玩具模型”。这种简单的模型并不追求逼真,而是具有关于量子雷达潜力的教育价值。当前用于传输信息的量子技术的发展引入了“量子雷达”的概念,尽管直到 2008 年 Lloyd 的文章发表之前,这个想法一直没有引起人们的兴趣 [4]。在这篇文章中,Seth Lloyd 表明,与光子对的量子纠缠可以显著提高光频范围内的远程探测灵敏度。这种利用纠缠进行远程检测的方式称为“量子照明”(QI)。自本文发表以来,人们对量子雷达领域的兴趣日益浓厚。该主题已经开展了新的理论和实验研究 [5-12]。围绕量子雷达的研究已经从关注单个光子转向小束光子 [4,11]。同样,研究也从光学频率范围 [4] 转向微波频率范围 [11-13],这更适合雷达应用,但也更具挑战性。在此背景下,目前正在开发新技术,以使微波领域的量子照明成为可能。例如,我们可以引用约瑟夫森结,它能够在低温下直接产生微波纠缠光子。还有光学光子和微波光子之间的耦合 [11]。然后,氮空位中心(称为 NV 中心)也允许产生微波纠缠光子。尽管这种量子雷达的可行性面临巨大困难,但该研究领域仍然非常活跃。量子雷达与传统雷达的用途相同,但其功能依赖于量子力学原理。
。CC-BY 4.0 国际许可 它是根据作者/资助者提供的,他已授予 medRxiv 永久展示预印本的许可。(未经同行评审认证)
假设检验 (HT) [1] 和量子假设检验 (QHT) [2] 在信息 [3] 和量子信息论 [4] 中发挥着至关重要的作用。HT 与通信和估计理论都有着根本的联系,最终是雷达探测任务的基础 [5],而雷达探测已经通过量子照明 (QI) 协议 [6, 7] 扩展到量子领域,更准确地说,通过微波量子照明模型 [8](有关这些主题的最新综述,请参阅参考文献 [9])。HT 和 QHT 最简单的场景是二元决策,因此它们可以简化为两个假设(零假设 H 0 和备选假设 H 1 )之间的统计区分。从最基本的层面上讲,量子雷达是一项二元 QHT 任务。两个备选假设被编码在两个量子通道中,信号模式通过这两个量子通道发送。根据目标是否存在,信号模式的初始状态会经历不同的变换,从而在输出端产生两个不同的量子态。最终的检测就简化为区分这两种可能的量子态。能否以较低的错误概率准确地做到这一点,与能否确定正确的结果直接相关。这一基本机制可以轻松地通过几何测距参数进行增强,这些参数可以量化与目标的往返时间,即目标的距离。虽然 QI 雷达可能实现最佳性能 [10],但它们需要生成大量纠缠态,这可能是一项艰巨的任务,特别是如果我们考虑微波区域的话。同时,量子雷达的定义本身可以推广到 QI 以外的任何利用量子部件或设备在相同能量、范围等条件下超越相应经典雷达性能的模型。在这些想法的推动下,我们逐步放宽 QI 的纠缠要求,并研究相应的检测性能,直到源变得刚好可分离,即
从不同环境中拍摄的照片重建对象的几何形状和外观很难作为照明,因此对象外观在捕获的图像中各不相同。这特别挑战更镜面的对象,其外观在很大程度上取决于观看方向。一些先前的方法使用嵌入向量的图像跨图像模型的外观变化,而另一些方法则使用基于物理的渲染来恢复材料和每位图像照明。这种方法在输入照明的显着变化时忠实地恢复了依赖的外观,并且倾向于产生大部分弥漫性结果。我们提出了一种方法,该方法通过首先在单个参考照明下使用多视图
金伯利·布罗克(Kimberly Brock)的传说地球是1932年在佐治亚州沿海坎伯兰岛(Cumberland Island)设立的历史小说称号,一群富有的年轻男女在本赛季居住。我们以为我们所知道的米歇尔·休克利(Michelle Shocklee)是一部在1969年和1942年田纳西州乡村的双时间轴小说中,在越南战争中杀死了双胞胎兄弟后,一名妇女学习家庭秘密。首张作家伊丽莎白·巴斯·帕尔曼(Elizabeth Bass Parman)的小说《库克县皇后》(Empress of Cooke County)是一个幽默的家庭故事,在1960年代在田纳西州的一个小镇上,一位母亲试图保持对她18岁女儿的控制权,同时及时翻新一座老豪宅,及时及时进行了高中同学聚会。The Devil具有令人愉悦的形状,Terry Roberts的最新小说发生在1920年的Asheville。罗伯茨的读者以前的书将记得斯蒂芬·罗宾斯(Stephen Robbins),他被要求解决在格罗夫公园旅馆(Grove Park Inn)被发现的年轻女子的谋杀案。阿什维尔作者韦恩·考德威尔(Wayne Caldwell)的河道是作者第一本诗歌伍德斯莫克(Woodsmoke)的同伴。河道继续讲述苏珊·麦克法尔斯(Susan McFalls)的故事,苏珊·麦克夫斯(Susan McFalls)搬到蓝岭山脉(Blue Ridge Mountains)的一栋老房子并翻新了。使用个人信件,日记条目和公共记录作者展示了乔治·马萨(George Masa)的个人斗争如何影响他对保护的兴趣,以及他如何倡导在乔治·马萨(George Masa)创建大烟山国家公园:珍妮特·麦克(Janet McCue)和保罗·邦斯特(Paul Bonesteel)重新想象的生活。詹妮弗·麦加哈(Jennifer McGaha)的祖母说,她最喜欢的年龄是五十五岁,在她自己的第五十五年中,詹妮弗(Jennifer)开始注意。Night Magic被选为我们的州杂志读书俱乐部11月的标题。欢乐文件是麦加哈对五十篇论文中分享的日常美的观察,探索了欢乐的艺术。陶艺大卫·德雷克(David Drake)制作了花盆和储物罐,但由于它们的美丽和巨大的尺寸,并且由于他用诗签名并刻有许多诗,所以它们现在是有价值的艺术品。在研究这些诗歌和当地唱片时,作者伦纳德·托德(Leonard Todd)汇总了德雷克(Drake)在卡罗来纳州粘土中的生活和创造性工作的编年史:被奴役的波特·戴维·德雷克(David Drake)的生活和传说。当南部女性通过美国测试厨房做饭时,包括70名女性作家的贡献,其中包括食谱,历史和南方食品的故事。自然作家利·安·亨尼(Leigh Ann Henion)在阿巴拉契亚地区的夜晚探索了自然世界,分享了关于动植物在黑暗中壮成长的鲜为人知的事实,就在我们自己的后院。
材料赠款:最高500美元的赠款,用于购买服务项目的用品。(例如:清理日,午餐筹款Ser,柠檬水摊位等)匹配赠款:Otterca Res Foundation将与学生主导的FU NDRAISER筹集的$ 500相匹配,以使501C3 N On-Profit组织受益。收集驱动器匹配:Ott Ercares Foundation将根据您收集的项目数量向非营利组织捐款。
符合 TDLR 采用的 NEC 最新版本、当地公用事业要求、本条款的要求以及以下条款的相关要求。 项目 104,“混凝土拆除” 项目 400,“结构的开挖和回填” 项目 416,“钻孔井基础” 项目 421,“水硬性水泥混凝土” 项目 431,“气压浇注混凝土” 项目 432,“护堤石” 项目 440,“混凝土加固” 项目 445,“镀锌” 项目 449,“锚栓” 项目 450,“栏杆” 项目 476,“顶进、钻孔或隧道开挖管道或箱体” 项目 610,“道路照明组件” 项目613,“高杆照明灯杆” 项目 614,“高杆照明组件” 项目 616,“照明系统性能测试” 项目 618,“导管” 项目 620,“电导体” 项目 621,“托盘电缆” 特殊规范,“管道电缆” 项目 624,“接地箱” 项目 625,“镀锌钢丝绳” 项目 627,“处理过的木杆” 项目 628,“电气服务” 项目 636,“标志” 项目 656,“交通控制设备基础” 项目680,“高速公路交通信号灯” 项目 682,“车辆和行人信号头” 项目 684,“交通信号电缆” 项目 685,“路边闪光灯灯组件” 项目 686,“交通信号杆组件” 项目 687,“基座杆组件” 项目 688,“行人和车辆检测器”
L3Harris 凭借 40 多年开发 AOM 设备和技术的经验,设计出能够以极高的精度控制捕获离子量子态的照明模块。这些子系统具有低噪声、低漂移和低串扰功能,现在可实现量子计算所需的多通道光束控制操作、原子钟和高级量子传感等应用的量子态操控以及增强型微加工。强大的多通道 AOM 照明模块需要单个紫外线 (UV)(典型值为 355 纳米)光束输入,并能够同时对 32 个单独光束的振幅和相位进行独立调制。它可实现基于离子阱的量子态操控所需的多量子比特状态转换和纠缠操作。
提出了一种量子增强、无闲散传感协议,用于在有噪声和有损耗的情况下测量目标物体对探测器频率的响应。在该协议中,考虑了一个嵌入热浴中的具有频率相关反射率𝜼(𝝎)的目标。目的是估计参数𝝀 = 𝜼(𝝎 2) − 𝜼(𝝎 1),因为它包含不同问题的相关信息。为此,采用双频量子态作为资源,因为有必要捕获有关该参数的相关信息。对于双模压缩态(HQ)和一对相干态(HC),在假设的𝝀 ≈ 0 的邻域中计算相对于参数𝝀的量子费希尔信息H,𝝀的估计显示出量子增强。这种量子增强会随着被探测物体的平均反射率而增长,并且具有抗噪声性。推导出最佳可观测量的显式公式,并提出了基于基本量子光学变换的实验方案。此外,这项工作为雷达和医学成像(特别是在微波领域)的应用开辟了道路。
自 2010 年代中期以来,无人驾驶飞行器(通常称为无人机)的普及度急剧上升,根据美国联邦航空管理局的数据,从 2016 年注册第一年的 60 万架增加到 2021 年的约 180 万架(FAA,2021 年)。这些无人机大多数是个人无人机,但其中约四分之一注册为商用无人机。商用无人机正用于房地产、农业、建筑和采矿等许多领域。它们主要用于检查和监视任务,因为它们能够访问远程位置并使用安装的摄像头录制高质量的镜头。然而,无人机很快也将用于送货,许多公司,例如美国的亚马逊(Palmer,2020 年)和中国的京东都已启动有限的无人机送货系统(McNabb,2019 年)。商用无人机的采用率正在迅速上升。预计该行业全球市场规模将从 2019 年的 15.9 亿美元增长到 2027 年的 85.27 亿美元,其中北美市场将占据主导地位(《财富商业洞察》,2020 年)。