卫星图像处理是管理我们星球资源的强大工具之一。最近,它在应对全球挑战(例如资源管理,可持续性,气候变化,灾难管理和响应,作物监测等)等全球挑战方面非常重要。图像处理中AI技术的演变已成为处理卫星图像的动力。通过提供高级工具进行分析。FDP旨在深入了解AI在卫星图像处理及其应用中的范围和影响。
摘要:叶酸受体-α(FR-α)在许多上皮癌中过度表达,包括卵巢癌、子宫癌、肾癌、乳腺癌、肺癌、结肠癌和前列腺癌,但在肾脏、唾液腺、脉络丛和胎盘等正常组织中表达有限。因此,FR-α已成为向FR阳性肿瘤输送治疗剂和成像剂的有希望的靶点。已经开发了一系列基于叶酸的PET(正电子发射断层扫描)放射性药物,用于选择性靶向FR阳性恶性肿瘤。本综述概述了迄今为止关于叶酸衍生的PET放射性结合物的设计、放射合成和用于靶向FR阳性肿瘤的效用的研究进展。本文主要介绍了用氟-18(t 1 / 2 = 109.8 分钟)和镓-68(t 1 / 2 = 67.7 分钟)标记的叶酸放射性结合物的结果,但也讨论了用“外来”和新 PET 放射性核素标记的叶酸,例如铜-64(t 1 / 2 = 12.7 小时)、铽-152(t 1 / 2 = 17.5 小时)、钪-44(t 1 / 2 = 3.97 小时)、钴-55(t 1 / 2 = 17.5 小时)和锆-89(t 1 / 2 = 78.4 小时)。对于肿瘤成像,迄今为止报道的 PET 放射性标记叶酸中,除了 [ 18 F]AzaFol 之外,没有一种完成了从实验室到临床的旅程,该药物在一项多中心首次人体试验中成功用于转移性卵巢癌和肺癌患者。然而,在不久的将来,我们预计会有更多基于叶酸的 PET 放射性药物的临床试验,因为临床对成像和 FR 相关恶性肿瘤的治疗越来越感兴趣。
摘要 —近年来,深度学习 (DL) 对基于脑电图 (EEG) 的运动想象脑机接口 (MI-BMI) 的改进做出了重大贡献。在实现高分类准确率的同时,DL 模型的规模也不断扩大,需要大量的内存和计算资源。这对嵌入式 BMI 解决方案提出了重大挑战,该解决方案应通过本地处理数据来保证用户隐私、减少延迟和低功耗。在本文中,我们提出了 EEG-TCN ET,一种新颖的时间卷积网络 (TCN),它在只需要少量可训练参数的情况下实现了出色的准确率。其低内存占用和低推理计算复杂度使其适合在资源有限的边缘设备上进行嵌入式分类。在 BCI 竞赛 IV- 2a 数据集上的实验结果表明,EEG-TCN ET 在 4 类 MI 中实现了 77.35% 的分类准确率。通过为每个受试者找到最佳网络超参数,我们进一步将准确率提高到 83.84%。最后,我们在 Mother of All BCI Benchmarks (MOABB) 上展示了 EEG-TCN ET 的多功能性,这是一个包含 12 个不同 EEG 数据集和 MI 实验的大规模测试基准。结果表明,EEG-TCN ET 成功地推广到单个数据集之外,在 MOABB 上的表现比目前最先进的 (SoA) 好 0.25 倍。索引术语 — 脑机接口、运动意象、深度学习、卷积神经网络、边缘计算。
微分同胚图像配准能够提供平滑的变换和拓扑保存,在许多医学图像分析任务中是必需的。传统方法对可接受的变换空间施加某些建模约束,并使用优化来寻找两幅图像之间的最佳变换。指定正确的可接受的变换空间具有挑战性:如果空间过于严格,配准质量可能会很差,而如果空间过于笼统,则优化可能难以解决。最近基于学习的方法利用深度神经网络直接学习变换,实现了快速推理,但由于难以捕捉微小的局部变形和泛化能力,在准确性方面面临挑战。在这里,我们提出了一种新的基于优化的方法,称为 DNVF(带神经速度场的微分同胚图像配准),该方法利用深度神经网络来建模可接受的变换空间。具有正弦激活函数的多层感知器 (MLP) 用于表示连续速度场,并为空间中的每个点分配一个速度矢量,从而提供对复杂变形进行建模的灵活性以及优化的便利性。此外,我们提出了一种级联图像配准框架 (Cas-DNVF),结合了优化和基于学习的方法的优点,其中训练完全卷积神经网络 (FCN) 来预测初始变形,然后使用 DNVF 进行进一步细化。在两个大型 3D MR 脑部扫描数据集上进行的实验表明,我们提出的方法明显优于最先进的配准方法。
对于医学图像分割,想象一下如果一个模型仅使用源域中的 MRI 图像进行训练,那么它在目标域中直接分割 CT 图像的性能如何?这种设置,即具有临床潜力的通用跨模态分割,比其他相关设置(例如域自适应)更具挑战性。为了实现这一目标,我们在本文中提出了一种新颖的双重规范化模型,该模型在通用分割过程中利用增强的源相似和源不相似图像。具体而言,给定一个源域,旨在模拟看不见的目标域中可能的外观变化,我们首先利用非线性变换来增强源相似和源不相似图像。然后,为了充分利用这两种类型的增强,我们提出的基于双重规范化的模型采用共享主干但独立的批量规范化层进行单独规范化。随后,我们提出了一种基于风格的选择方案,在测试阶段自动选择合适的路径。在三个公开数据集(即 BraTS、跨模态心脏和腹部多器官数据集)上进行的大量实验表明,我们的方法优于其他最先进的领域泛化方法。代码可在 https://github.com/zzzqzhou/Dual-Normalization 获得。
由于可能存在数据偏差和预测方差,图像去噪是一项具有挑战性的任务。现有方法通常计算成本高。在这项工作中,我们提出了一种无监督图像去噪器,称为自适应双自注意网络(IDEA-Net),以应对这些挑战。IDEA-Net 受益于生成学习的图像双自注意区域,其中强制执行去噪过程。此外,IDEA-Net 不仅对可能的数据偏差具有鲁棒性,而且还通过仅在单个噪声图像上应用具有泊松丢失操作的简化编码器-解码器来帮助减少预测方差。与其他基于单图像的学习和非学习图像去噪器相比,所提出的 IDEA-Net 在四个基准数据集上表现出色。 IDEA-Net 还展示了在低光和嘈杂场景中去除真实世界噪声的适当选择,这反过来有助于更准确地检测暗脸。源代码可在 https://github.com/zhemingzuo/IDEA-Net 获得。
图 1:使用国际 10-20 系统从 (a) 矢状面和 (b) 轴平面 (c) 头皮角度看到的 64 个电极配置表示。注意:A= 耳垂,C = 中央,Pg = 鼻咽,P = 顶叶,F = 额叶,Fp = 额极和 O = 枕叶。
背景:计算机断层扫描 (CT) 仍然是创伤性脑损伤 (TBI) 成像评估的金标准。TBI 本身因其不良影响已成为发展中国家的主要问题。目的:目的是评估患有 TBI 的患者的颅脑计算机断层扫描图像。材料和方法:对 2013 年 11 月 13 日至 2019 年 5 月 31 日期间在尼日利亚乌约大学教学医院因头部受伤而接受颅脑 CT 检查的患者进行了回顾性研究。持续时间与服务中断的不连贯时间无关。应用简单的数据分析评估了患者的人口统计学和 CT 特征。结果:评估了 232 名患者,最小年龄为 6 个月,最大年龄为 78 岁。男性患者占多数,比例为 2.74:1。受影响最大的年龄段为 30-39 岁(23.27%)和 20-29 岁(22.84%)。44 名患者(18.97%)的脑 CT 正常。CT 异常患者中最常见的病变是颅内出血(n = 188,81.03%)。其中,脑外出血(n = 100,53.19%)超过脑内出血(n = 88,46.81%)。一半的脑内出血是多发性的。34.48%(n = 80)的患者出现颅骨骨折。最常见的部位是面骨(n = 24,30.00%),而最少见的部位是枕骨(n = 4,5.00%)。15% 的患者有多处骨折,其中还包括颅底。结论:TBI 在年轻活跃男性中很常见。最常见的病变是伴有外轴偏向的颅内出血。
抽象的脑肿瘤分割是对医疗保健中诊断和治疗计划很重要的重要步骤。大脑MRI图像是根据建议的方法在收集数据并准备进一步分析之前先进行预处理的。建议的研究介绍了一种新策略,该策略使用以生物启发的粒子群优化(PSO)算法来分割脑肿瘤图像。为了提高准确性和可靠性,可以调整分割模型的参数。标准措施等标准度量,例如精度,精度,灵敏度,jaccard索引,骰子系数,特异性,用于绩效评估,以衡量建议的基于PSO的分割方法的有效性。建议方法的总体准确性为98.5%。随后的绩效分析分别为骰子得分系数,Jaccard指数,精度,灵敏度和特异性的91.95%,87.01%,92.36%,90%和99.7%的结果提供了更好的结果。因此,此方法对于放射科医生来说可能是有用的工具,可以支持它们诊断大脑中的肿瘤。关键字 - 脑肿瘤,群智能,粒子群优化,磁共振图像。
近年来非酒精性脂肪肝疾病(NAFLD)病例的迅速增加引起了人们的重大关注。准确地识别组织的改变对NAFLD的诊断至关重要,但是该任务在病理图像分析中带来了挑战,特别是与小规模的数据集有关。最近,从完整的微调转变为改编视觉模型的提示的范式转变为小规模数据分析提供了新的视角。然而,基于任务不足提示的现有提示方法主要是为了通用图像识别而开发的,该方法在为复杂病理学图像提供指导的指示方面缺乏。在本文中,我们提出了基于定量属性的提示(QAP),这是一种专门用于肝脏病理学分析的新提示方法。QAP基于两个定量属性,即基于K功能的空间属性和基于直方图的形态学属性,旨在对组织状态进行标准评估。此外,condi-