根据 JDL 数据融合组过程模型,在 0、1、2 和 2+/3 级进行数据和信息融合。为了支持多传感器 IMINT 和 GMTI 融合和 3D 可视化,我们构建了阿拉巴马州莫比尔码头和周边地区的 3D 站点模型,该模型允许使用我们现有的图像挖掘工具进行搜索,并提供 COP 环境,可以在其中模拟和可视化场景。我们开发了用于模拟交通和编写单个车辆移动脚本的软件,以支持场景创建。我们探索了几个新概念来支持 2+/3 级的更高级别的信息融合。一种方法源于对动态脉冲信息网络及其同步形式的神经处理的洞察。这些网络可以以关系和学习到的关联的形式绑定数据和语义知识。我们证明了使用这些网络在移动数据集中学习动态城市场景中移动车辆之间的简单关联的可行性。第二种方法涉及从图像和/或文本数据中提取知识结构。我们开发了两种从数据集中的概念共现中发现分类法的机制。我们证明了这些方法对融合图像和文本语料库的有效性。最后一种方法利用神经启发机制从移动的跟踪实体中学习正常行为模型。这些模型随后被使用
禽心和哺乳动物心以类似的方式将血液传递到肺和身体[Sturkie的鸟类生理学,第五版]。鸟类和哺乳动物具有房屋和心室隔s,可以在氧化和脱氧的血液之间分离,并完全分离全身和肺部循环。通过大型骑士静脉从体内从人体返回到右心房。脱氧的血液移至右心室,在该心室被加压以进行肺循环。血液转储其二氧化碳,并通过肺毛细血管获取O2。与哺乳动物一样,新近充氧的血液通过四个大肺静脉回到左心房。含氧血液移至左心室,在那里加压以进行全身循环。
我们介绍C ONTITION- WARE神经N ETWORK(CAN),这是一种将控制添加到图像生成模式中的新方法。与先前的条件控制方法并行,可以通过动态降低神经网络的重量来控制图像生成过程。这是通过引入条件感知的重量产生模式来实现的,该模块会根据输入条件为卷积/线性层生成条件重量。我们测试可以在Coco上的ImageNet和文本对图像生成上生成类别图像的生成。可以始终如一地为包括DIT和UVIT在内的扩散变压器模型提供显着改进。特别是,Ca n与有效的T(CAT)结合在Imagenet 512×512上达到2.78 FID,超过DIT-XL/2,同时每个采样步骤需要少52×MAC。
[nt s&p2016] A. Naveh和E. Tromer,“ Photoproof:任何一组允许转换的加密图像身份验证” - S&P- 2016
尽管基于3D的GAN技术已成功地应用于具有各种属性的照片真实的3D图像,同时保持视图一致性,但很少有关于如何罚款3D impersimens的研究,而不会限制其属性特定对象的特定对象类别。为了填补此类研究空白,我们提出了一个基于3D的GAN代表的新型图像操纵模型,以对特定的自定义贡献进行细粒度控制。通过扩展最新的基于3D的GAN模型(例如,EG3D),我们的用户友好定量操作模型可以实现对3D操作多属性数量的精细而归一化的控制,同时实现了视图一致性。我们通过各种实验验证了我们提出的技术的有效性。
文本对图像(T2I)生成模型最近成为一种强大的工具,可以创建照片现实的图像并引起多种应用。然而,将T2i模型的有效整合到基本图像分类任务中仍然是一个悬而未决的问题。促进图像锁骨表现的一种普遍的策略是通过使用T2I模型生成的合成图像来增强训练集。在这项研究中,我们仔细检查了当前发电和常规数据增强技术的缺点。我们的分析表明,这些方法努力产生既忠实的(就前景对象)而且针对领域概念的多样化(在背景上下文中)。为了应对这一挑战,我们引入了一种创新的类数据增强方法,称为diff-mix 1,该方法通过在类之间执行图像翻译来丰富数据集。我们的经验结果是,DIFF-MIX在信仰和多样性之间取得了更好的平衡,从而导致各种图像分类场景之间的性能显着提高,包括域名数据集的少量,常规和长尾分类。
本文介绍了 DeepFLASH,一种用于基于学习的医学图像配准的高效训练和推理的新型网络。与从高维成像空间中的训练数据中学习空间变换的现有方法相比,我们完全在低维带限空间中开发了一种新的配准网络。这大大降低了昂贵的训练和推理的计算成本和内存占用。为了实现这一目标,我们首先引入复值运算和神经架构表示,为基于学习的配准模型提供关键组件。然后,我们构建了一个在带限空间中完全表征的变换场的显式损失函数,并且参数化要少得多。实验结果表明,我们的方法比最先进的基于深度学习的图像配准方法快得多,同时产生同样精确的对齐。我们在两种不同的图像配准应用中展示了我们的算法:2D 合成数据和 3D 真实脑磁共振 (MR) 图像。我们的代码可以在https://github.com/jw4hv/deepflash上找到。
摘要。宽场成像仪(WFI)是高能天体物理学的高级望远镜(雅典娜)的两种焦平面仪器之一,ESA的下一个大型X射线天文台计划于2030年代初发射。当前的基线光环轨道在L2左右,并且正在考虑太阳 - 地球系统的第二个Lagrangian点。对于潜在的光环轨道,辐射环境,太阳能和宇宙质子,电子和Heions都将影响仪器的性能。对仪器背景的进一步关键贡献是由未关注的宇宙硬X射线背景产生的。重要的是要了解和估算预期的工具背景并研究措施,例如设计模式或分析方法,这可以改善预期的背景水平,以达到具有挑战性的科学要求(<5×10 - 3计数∕ cm 2 ∕ cm 2 kev kev s s in 2至7 kev)。通过考虑到L2处的质子通量的新信息,可以改善Geant4中进行的WFI背景模拟。此外,已对WFI仪器的模拟模型及其在Geant4模拟中采用的周围环境进行了完善,以遵循WFI摄像机的技术开发。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jatis.7.3.034001]
微分同胚可变形图像配准在许多医学图像研究中至关重要,因为它提供了独特的属性,包括拓扑保存和变换的可逆性。最近基于深度学习的可变形图像配准方法利用卷积神经网络(CNN)从合成基本事实或相似性度量中学习空间变换,从而实现快速图像配准。然而,这些方法往往忽略了变换的拓扑保存和变换的平滑性,而平滑性仅由全局平滑能量函数来强制执行。此外,基于深度学习的方法通常直接估计位移场,这不能保证逆变换的存在。在本文中,我们提出了一种新颖的、有效的无监督对称图像配准方法,该方法最大化微分同胚图空间内图像之间的相似性,并同时估计正向和逆变换。我们使用大规模脑图像数据集在 3D 图像配准上评估了我们的方法。我们的方法实现了最先进的配准精度和运行时间,同时保持了理想的微分同胚特性。