形态测量表征是描述神经元培养和识别表型差异的重要程序。这项任务通常需要劳动密集型的测量和对大量培养神经元中的众多神经突进行分类。为了自动执行这些测量,我们编写了 AutoNeuriteJ,这是一个 imageJ/Fiji 插件,可以测量和分类大量神经元中的神经突。我们表明,Auto-NeuriteJ 能够检测由已知会影响神经元生长的几种化合物引起的神经突生长变化。在这些实验中,在几个小时内获得了每种条件下超过 5000 个小鼠神经元的测量结果。此外,通过分析缺乏微管相关蛋白 6 (MAP6) 的小鼠神经元和野生型神经元,我们说明 AutoNeuriteJ 能够检测轴突长度的细微表型差异。总体而言,使用 AutoNeuriteJ 将提供快速、无偏和准确的神经元形态测量。
近视脉络膜新生血管形成(MCNV)是许多视网膜疾病中最常见的病理近视的最常见危险性综合体之一。光学相干断层扫描血管造影(OCTA)是一种新兴的非侵入性成像技术,最近被包括在MCNV的研究和处理中。但是,没有标准工具可以及时且可靠地分析MCNV的八颗图像。在这项研究中,我们提出了一个可自定义的ImageJ宏,该宏可自动使用八粒图像处理,并允许用户测量9个MCNV生物标志物。我们开发了一个三阶段图像处理管道,以使用宏来处理八幅图像。首先对图像进行手动描绘,然后使用高斯滤波器进行DINO。这是由Frangi滤波器和局部自适应阈值的应用。最后,使用墨西哥帽子过滤器获得了Skele的图像。从骨架化图像中计算出包括连接密度,容器直径和分形尺寸在内的九种血管生物标志物。在所有生物标志物的26八八张图像数据集上测试了宏。在计算的生物标志物值中出现了两个趋势。首先,病变大小的依赖参数(MCNV面积(mm 2)平均值= 0.65,SD = 0.46)显示较高的变化,而归一化参数(符合性密度(N/mm):平均值= 10.24,SD = 10.63)在整个数据集中都是均匀的。计算值与现有文献中的手动调查一致。结果说明了我们的ImageJ宏是手动八片图像处理的替代方案,包括用于批处理处理和参数自定义的规定,提供了MCNV的系统,可靠的分析。
所用仪器/技术技能 • 紫外可见分光光度计和荧光分光光度计用于光谱测量。型号:V-670 Jasco 和 HORIBA Fluromax 荧光光谱仪 • TCSPC 用于荧光寿命测量。型号:ISS 90021。 • FT-IR 光谱仪用于研究元素间的键合。型号:Nicolet-6700。 • PCPDF-WIN 软件用于 PXRD 数据分析。 • 熟悉用于形态学研究的 FESEM-EDX 仪器。型号:JSM-IT500 LA。 • INKSCAPE 和 imagej 软件用于标记和测量从 TEM 获得的纳米颗粒的尺寸。 • 熟悉用于研究热性能的 TGA 和 DSC 仪器。 • 型号:TGA SDST Q600 和 DSC Q20 V24.10。 审稿人期刊
教学活动:许可计划的相关教师 - 教授主题:卫生系统,健康影响评估,医疗保健管理,公共卫生经济学。写作和炽烈的写作:对在国际学术期刊上发表的众多手稿的贡献。统计分析:各种临床研究项目的研究支持。任务包括调解和阶乘分析,回归建模,相关分析和分布。图像处理:使用开源ImageJ软件进行定性和定量图像处理。开发个性化宏,以促进各种医学成像应用投资回报的自动分析。顾问:SNMF顾问咨询有关为主要援助提供公共卫生服务的框架合同的咨询。
CD8 (sc-1177,Santa Cruz Biotechnology)、抗 NK1.1 (14-5941-82C,eBioscience) 和抗 F4/80 (sc- 377009,Santa Cruz Biotechnology) 抗体。免疫组织化学 (IHC) 使用 MACH4 通用 HRP 聚合物检测系统 (BRI4012H,Biocare Medical) 和苏木精溶液 Gill II (GHS232,Sigma-Aldrich) 进行,如前所述 [24],最后,使用 Aperio ScanScope AT (数字幻灯片扫描仪,Leica Biosystems Inc) 获取全幻灯片数字图像。使用 NIH ImageJ (版本 1.52p) 进行定量分析,并以相对光密度表示。此外,通过使用抗 IFN-γ(505802,
我们感谢 Ciernia 实验室和 Pavlidis 实验室成员在整个项目过程中的实验室会议上提供的周到反馈和建议。我们还要感谢 Wai Hang (Tom) Cheng,他的帮助对于学习如何在 Axioscan 幻灯片扫描仪上成像以及开始进行小胶质细胞形态分析至关重要;Nicholas Michelson,他的帮助对于在 ImageJ 中排除 MicrogliaMorphology 各种特征的代码故障非常有帮助;以及 Dylan Terstege,他在发布之前慷慨地提供了用于 FASTMAP 对齐 Allen Brain Atlas 的材料。我们还要感谢 Brian MacVicar 博士与我们分享他实验室的 Cx3cr1- GFP 小鼠,我们将其用于 2xLPS 体内实验。我们感谢通过 Dynamic Brain 提供的资源
用1%RIPA裂解缓冲液(Elabscience Biotechnology Co.,Ltd,Ltd,Wuhan,中国)提取HCMEC的总蛋白质,并具有磷酸化抑制剂(MCE)。蛋白质浓度,并通过12%SDS-PAGE分离30 µg蛋白质样品,然后转移到PVDF膜(Millipore,Billerica,MA,美国)。在室温下用5%非脂肪干牛奶用5%的非脂肪干牛奶阻塞膜,并在4°C下与一抗的一抗孵育过夜。随后,将膜与相应的二抗在室温下孵育2小时。使用增强的化学发光检测系统(ECL系统; Millipore,Billerica,MA,USA)可视化的蛋白质条带。ImageJ软件用于量化Western blot数据。
图 1:微注射 Edit-R Cas9 核酸酶 mRNA 和合成 crRNA:tracrRNA 的斑马鱼胚胎具有可检测的编辑事件。仅微注射 Edit-R Cas9 mRNA(+/+ 泳道)或微注射 Edit-R Cas9 mRNA 加靶向 GFP 的 crRNA:tracrRNA(+ 泳道)。注射后 2 天制备基因组 DNA,并使用位于切割位点两侧的引物进行 PCR。使用 T7EI 进行 DNA 错配分析,并在 2% 琼脂糖凝胶上分离样品。使用 ImageJ 软件估计由于基因编辑而导致的插入和缺失百分比 (Indel %),并显示在泳道底部。在所分析的斑马鱼胚胎中,75% 实现了使用靶向 GFP 的 crRNA:tracrRNA 编程的 Cas9 mRNA 的靶向 DNA 切割。
在4T1肿瘤细胞中,CF和RF的溶血跟踪器绿色FM(蓝色)和DIL(红色)共定位。(b)使用ImageJ软件确定的(a)的DIL荧光强度。(c)JC-1(JC-1单体绿色,在不同处理下用于JC-1的荧光图像红色。(d)使用DAPI和-H2AX染色在所示的细胞中使用DAPI和-H2AX染色可视化核凝结和DNA碎片,并显示了代表性的图片。(e)基于每个处理组100个细胞(γ-H2AX焦点/100μm2,n = 3)的分析,确定了γ-H2AX灶的密度。(f)使用用2或6 Gy辐射处理的4T1细胞(n = 3)进行了菌落形成测定。(g)PMSI对细胞内的影响
线虫秀丽隐杆线虫是生物学研究中的关键模型生物,因为它与人类的遗传相似性及其在研究复杂过程中的效用。传统的图像分析方法(例如使用ImageJ的方法)是劳动密集型的,这导致了AI的整合。本研究介绍了一个具有三种机器学习模型的AI框架:Wor-Mgan,一种生成对抗网络,用于生成合成线虫图像以增强训练数据;蠕虫,用于精确运动跟踪;和蠕虫,以进行准确的解剖测量。一起,这些工具显着提高了表型分析的效率和准确性。wor-mai具有高通量数据集分析的巨大潜力,在系统生物学,药物发现和衰老方面进行了研究。该框架简化了工作流程,可以在秀丽隐杆线虫研究中更快,更精确的发现。