• 2017 年 16 月在阿尔托发射升空 • 两个摄像头:常规和高光谱模块 • 3 种操作模式:6、25 和 75 波长 • 内置温度补偿,板载校准
nils Straub,Wiebke Herzberg,Anna Dittmann,Elke Lorenz iea-Methods的微小比例预测和他们的无人可乐Roskilde,2024-04-10 www.ise.fraunhofer.de
诺斯罗普·格鲁曼公司任务扩展飞行器 (MEV) RPO 成像仪在 GEO 上的性能 Matt Pyrak 诺斯罗普·格鲁曼空间系统 约瑟夫·安德森 空间物流有限责任公司 摘要 本文将描述和说明由诺斯罗普·格鲁曼公司制造的空间物流有限责任公司任务扩展飞行器 (MEV) 使用的会合和近距操作 (RPO) 传感器的实际性能。MEV-1 于 2019 年发射,并于 2020 年 2 月与位于 GEO 墓地轨道上距离 GEO 约 300 公里的 Intelsat 901 卫星执行会合、近距操作和对接 (RPOD)。MEV-2 于 2020 年发射,并于 2021 年 2 月和 3 月与直接在地球静止轨道上的 Intelsat 10-02 卫星执行了类似的 RPOD 序列。这些飞行器使用三种不同的传感现象来提供所有必要的相对导航数据,以实现上述 RPOD 功能。这些包括可见光谱成像仪(窄视场和宽视场)、长波红外 (LWIR) 成像仪(窄视场和宽视场)和主动扫描激光雷达。本文将探讨这些传感器在 GEO 实际任务中的性能及其对未来空间态势感知能力的潜在影响。1. 简介 Space Logistics LLC 任务延长飞行器 (MEV) 是其主承包商 Northrop Grumman Space Systems (NG) 和 NG 的几家传统公司十多年开发工作的成果。MEV 被认为是新卫星服务市场中的第一代能力,它为未设计为需要维修的航天器提供宝贵的寿命延长服务。MEV 基于 Northrop Grumman 的传统 GEOStar 航天器平台构建,并采用了两项关键技术发展。第一个是准通用对接系统,它与目前在轨的大多数最初未设计为对接的 GEO 航天器兼容。第二,是整合了强大而灵活的 RPO 传感器套件,该套件由尖端硬件和软件组成,这些硬件和软件基于诺斯罗普·格鲁曼的传统 RPO 系统,包括 Cygnus 空间站补给飞行器。MEV 可延长未为在轨加油而建造的卫星的寿命。为了执行任务,MEV 与客户飞行器进行半自动会合,并使用大约 80% 的 GEO 卫星上存在的两个功能与其对接,这两个功能是面向天顶的液体远地点发动机 (LAE) 喷嘴和周围的发射适配器环。对接后,客户飞行器的推进系统和姿态控制完全禁用,从而使 MEV 能够全权负责客户飞行器的指向和轨道管理。虽然 MEV 对接系统无疑是艺术巧思的杰作,但本文将仅探讨 MEV RPO 传感器套件的性能,一组抗辐射尖端传感器,为 MEV 相对导航算法提供原始数据。这些包括可见光谱摄像机组、长波红外 (LWIR) 摄像机组和扫描激光雷达。RPO 传感器套件允许 MEV 从 50+km 处跟踪客户车辆,并在精确对接事件期间保持厘米级的相对位置。根据客户要求,MEV 和下一代车辆可以使用其传感能力从近距离对客户车辆进行多光谱检查,并通过激光雷达收集高密度 3D 检查扫描。但对这种能力最直观的展示来自 MEV-1 对接后发布的首批从 GEO 上方拍摄的在 GEO 带中处于活跃运行状态的航天器商业图像。
图像传感器设计和性能 CMOS 成像仪、CCD 成像仪、SPAD 传感器 全新颠覆性架构 全局快门图像传感器 低噪声读出电路、ADC 设计 单光子灵敏度传感器 高帧率图像传感器 高动态范围传感器 低压低功耗成像仪 高图像质量;低噪声;高灵敏度 改善的色彩再现 具有特殊数字处理的非标准彩色模式 片上成像系统、片上图像处理 基于事件的图像传感器 像素和图像传感器器件物理学 新器件和像素结构 先进材料 超小型像素开发、测试和特性描述 新器件物理学和现象 电子倍增像素和成像仪 提高 QE、阱容量、减少串扰和改善角度响应的技术 前照式、背照式和堆叠像素及像素阵列 像素模拟:光学和电气模拟、2D 和 3D、设计和模拟 CAD、改进的模型
图像传感器设计和性能CMOS成像仪,CCD成像器,SPAD传感器新和破坏性体系结构全局快门图像传感器低噪声读数电路,ADC设计单个光子灵敏度传感器高框架速率图像传感器高动态范围传感器高动态范围传感器低电压传感器低电压和低功率成像器高图像质量;低噪音; High sensitivity Improved color reproduction Non-standard color patterns with special digital processing Imaging system-on-a-chip, On-chip image processing Pixels and Image Sensor Device Physics New devices and pixel structures Advanced materials Ultra miniaturized pixels development, testing, and characterization New device physics and phenomena Electron multiplication pixels and imagers Techniques for increasing QE, well capacity, reducing crosstalk, and改进角响应前侧照明,后侧照明以及堆叠的像素和像素阵列像素模拟:光学和电气模拟,2D和3D,用于设计和模拟的CAD,改进的模型
图像传感器设计和性能 CMOS 成像仪、CCD 成像仪、SPAD 传感器 全新颠覆性架构 全局快门图像传感器 低噪声读出电路、ADC 设计 单光子灵敏度传感器 高帧率图像传感器 高动态范围传感器 低压低功耗成像仪 高图像质量;低噪声;高灵敏度 改善的色彩再现 具有特殊数字处理的非标准彩色模式 片上成像系统、片上图像处理 基于事件的图像传感器 像素和图像传感器器件物理学 新器件和像素结构 先进材料 超小型像素开发、测试和特性描述 新器件物理学和现象 电子倍增像素和成像仪 提高 QE、阱容量、减少串扰和改善角度响应的技术 前照式、背照式和堆叠像素及像素阵列 像素模拟:光学和电气模拟、2D 和 3D、设计和模拟 CAD、改进的模型
radar signal data to perform target detection, verification, tracking, and classification Controlled sensor emissions through cueing, sensor data fusion Lightweight multi-spectral imagers and rangefinders Compact, marinized, electro-optical and radar sensors Payload elevation concepts to increase horizon distance for maritime platforms ► Loitering Munitions and fires capabilities to include:
他是一位知名的太阳能物理学家,在太阳活动研究方面拥有44年的经验,以及所谓的冠状质量弹出如何影响人类的技术和地球上和太空中的活动。有250多个出版物的名字,他的作品包括31年的领导太空式仪器的研究和开发,包括太阳极端乌干达光谱仪和NASA上的Heliosperic/ Corospheric/ Coronal Imagers和欧洲航天局航天器上的飞船。