标题:迈向多光谱红外成像 演讲者姓名:Elahe Zakizade 博士 公司名称/研究所:弗劳恩霍夫微电子电路与系统研究所 项目名称:Eurostars SPEKTIR 资助小组:Eurostars 摘要是否可以在网站上发表: ☒ 是 ☐ 否 提供最多 500 字的摘要。使用 ARIAL 字体,11 号。如果使用图表,文本和图表必须保持在这一页内。 近年来,热成像相机市场不断增长。主要驱动因素是基于微测辐射热计技术的非制冷红外焦平面阵列 (IRFPA),因为它们是低成本成像仪,不需要额外的复杂和昂贵的冷却系统。大多数当前的热成像应用都基于长波红外 (LWIR) 辐射的检测,波长覆盖从 8 μm 到 14 μm,对人体温度敏感,不仅可用于军事应用,而且在智能手机、监控摄像头或自动驾驶汽车等大众市场应用中也越来越受欢迎。此外,非制冷热像仪在波长范围为 3 μm 至 5 μm 的中波红外 (MWIR) 中也能敏感。MWIR 传感器可用于监测温度高达几百摄氏度的“热源”、检测危险或易燃气体或环境监测等应用。红外区域多光谱成像的实现引起了广泛关注,因为它能够可视化和组合来自 MWIR 和 LWIR 区域的信息。微测辐射热计作为非制冷 IRFPA 的传感元件,采用热原理运行。它们是独立的隔热传感器膜。它们吸收红外辐射并将其转化为温度上升。微测辐射热计膜的温度变化会导致电阻随入射功率的变化而变化。CMOS 读出电路将微测辐射热计随温度变化的电阻变化转换为数字值并生成图像。实现多光谱吸收的一种有前途的方法是使用等离子体超材料吸收器 (PMA)。在过去的几十年中,等离子体领域因其各种潜在应用而备受关注,尤其是在可见光谱范围内。等离子体结构的研究也已扩展到红外区域,以实现高吸收率并调整中波红外和长波红外光谱区域的吸收波长。实现适用于弗劳恩霍夫 IMS 微测辐射热计技术的合适吸收器的有希望的候选材料是金属-绝缘体-金属 (MIM) 结构,该结构由上部周期性金属结构、中间介电层和下部金属反射层组成,以在所需的吸收波长下产生强局部表面等离子体共振。材料选择,弗劳恩霍夫 IMS 研究了沉积技术和图案化工艺,以实现高灵敏度的多光谱热成像。弗劳恩霍夫 IMS 将报告其在实现多光谱红外成像方面取得的进展。它将展示用于多光谱红外成像的带有等离子体超材料吸收器的微测辐射热计的最新模拟结果和实验表征。
摘要 太赫兹 (THz) 超材料因其不寻常的吸收体而被开发用于 THz 传感、检测、成像和许多其他功能。然而,不寻常的吸收光谱会随着不同的入射角而变化。因此,我们设计并制作了一个具有金属-绝缘体-金属 (MIM) 结构超材料吸收体的焦平面阵列,以供进一步研究。使用 THz 时域光谱 (THz-TDS) 测量了入射角从 20° 到 60° 的吸收光谱,实验结果表明吸收光谱随入射角的变化而变化。本研究开发了一个用于提取吸收频率特性的基本分析非对称峰模型,以定量探索吸收体行为随入射角的变化。最好的结果是,使用此峰值模型可以轻松找到与最高吸收相对应的频率。实验数据与非对称峰模型的验证一致。此外,还发现了第二个将参数定量与入射角相关联的模型,可以预测吸收光谱的偏移和变化。根据二次模型推导,预测吸收光谱在特定入射角下具有谷状吸收曲线。所提出的提取方法的基本特征是它可以应用于任何基于物理的 MIM 超材料系统。这种模型将指导 THz 超材料吸收器、传感器、成像器等的设计和优化。
本介绍性文章将早期半导体检测器向现代RA Diation Imaging Instruments的演变(现在具有数百万个信号处理细胞)的发展方面,利用了硅纳米技术的潜力。MEDIPIX和TIMEPIX组件是此演变中的主要移动器之一。可以使用单个电离粒子和光子检测矩阵中检测矩阵中的影响来研究这些基本量子本身,或者允许人们可视化辐射下对象的各种特征。x-射线成像可能是后者最常用的模态,新成像器可以处理每个事件x - 光子以获取具有有关对象的结构和组成的其他信息的图像。可以利用能量特异性X射线吸收来成像原子分布。出现了无数其他应用程序。为例,在分子光谱学中,每个像素中的亚纳秒时序可以实时传递,以单分子的飞行时间来实时映射样品的分子组成,与经典的凝胶电泳相比,革命是革命。参考文献和一些个人印象可在超过50年的时间内照亮辐射检测和成像。推断和对未来发展的狂野猜测总结了这篇文章。
本研究调查了人类运动想象 (MI) 能力的评估。通常,MI 能力通过两种方法测量:自填问卷 (MIQ-3) 和心理计时 (MC),后者测量实际和想象的运动任务之间的时间差异。然而,这两种测量都依赖于受试者的自我评估,而不使用生理测量。在本研究中,我们提出了一组从眼球注视信号的非线性动力学中提取的新特征,以区分好和坏的想象者。为此,我们设计了一个实验,让 20 名志愿者(根据 MC 分为好或坏的想象者)执行三项任务:运动任务 (MT)、视觉想象任务 (VI) 和运动想象任务 (KI)。在整个实验过程中,使用眼动追踪系统持续监测受试者的目光注视。通过对重建相空间进行递归量化分析来分析目光注视时间序列,并在两组之间进行比较。统计结果表明非线性眼球行为如何表达意象心理过程的内在动态,并可用作 MI 能力的更客观、基于生理的测量方法。
在不进行侵入性近场操作的情况下从远场获取场景的亚波长信息是波工程学中的一个基本挑战。然而,众所周知,波在复杂介质中的停留时间决定了波对扰动的敏感度。现代编码孔径成像仪利用复杂介质提供的自由度 (dof) 作为天然多路复用器,但并未认识到并利用将感兴趣的物体放置在复杂介质外部或内部之间的根本区别。在这里,我们表明,只需用混响被动混沌腔将亚波长物体封闭在其远场中,就可以将定位亚波长物体的精度提高几个数量级。我们认为深度学习是一种合适的抗噪工具,可以提取编码在多路复用测量中的亚波长定位信息,实现远超训练数据中可用的分辨率。我们在微波领域展示了我们的发现:利用简单可编程超表面的配置自由度,我们使用仅强度的单频单像素测量,在混沌腔内沿弯曲轨迹定位亚波长物体,分辨率为 λ = 76。我们的研究结果可能在光声成像以及基于回响弹性波、声音或微波的人机交互方面具有重要应用。
可以轻松地从指示信号的阳极像素中确定。确定相互作用深度有两种可能性。第一个是使用阴极和阳极像素之间的信号比。由于短像素效应,阳极像素的诱导信号几乎不受相互作用深度的影响,而在平面阴极上诱导的信号直接取决于相互作用的深度。因此,阴极与阳极的信号比可以是相互作用深度的索引。第二种可能性是使用电子迁移时间,可以从诱导信号的脉冲形状确定。以前的可能性很难确定多个相互作用位置,而后者则适合同时确定它们。在包括SI,CDTE和TLBR在内的半导体材料中662 KEV Gamma射线的康普顿散射的线性衰减系数分别为0.18、0.37和0.47 cm -1。这些值是从NIST XCOM处的光子横截面数据计算得出的。(14),由于TLBR的线性衰减系数最高,因此TLBR有望用于构建具有高检测效率的康普顿成像仪。在这项研究中,我们使用制造的像素化TLBR半导体检测器来证明康普顿成像实验,其中使用电子迁移时间确定相互作用深度。我们还讨论了确定相互作用点的顺序顺序的策略,这对于基于康普顿成像估算入射伽马射线方向很重要。
与目前的平面传感器相比,曲面成像传感器可显著减小成像系统的尺寸、重量和成本,同时减轻离轴光学像差。在过去二十年中,解锁这些关键功能引起了主要参与者的兴趣。SILINA 一直在开发一种可适应各种传感器特性的 CMOS 图像传感器弯曲工艺。该工艺使图像传感器能够变形为各种形状,从而最大限度地提高每个成像系统的性能。事实上,曲面 CMOS 图像传感器 (CIS) 有助于制造紧凑型光学仪器,尤其是成像仪、望远镜和光谱仪。简化光学系统可以将光机约束从设计阶段释放到集成阶段。如今,自由曲面光学元件参与了满足紧凑、快速、广角和高分辨率系统共同需求的解决方案的开发。然而,自由曲面在制造和计量方面仍然极其昂贵。此外,场曲像差仍然难以校正,而曲面 CIS 则为此提供了合适的解决方案。2021 年初,SILINA 展示了球面和非球面 CIS 的制造,为光学系统设计开辟了新领域。光学设计师现在可以考虑各种传感器形状,通过考虑球面、非球面或更复杂的焦面来优化他们的系统。
Eric Donovan 是卡尔加里大学的物理学和天文学教授。他的研究重点是空间物理学。更具体地说,Eric 开发、部署和运营成像仪网络,用于遥感加拿大大部分地区的极光。他的目标是探索地球磁层中发生的等离子体物理过程,这些过程一方面导致极光,另一方面塑造近地空间环境。他是五个成功 CFI 应用程序的 PI,并共同领导 NASA THEMIS 任务的极光成像部分。从 2016 年到 2018 年,Eric 担任科学学院副院长研究。作为 ADR,他领导了一个咨询过程,以四大挑战和三个研究平台的形式确定了学院的研究战略。此外,作为 ADR,他对小型和大型研究项目的需求有了更深的了解。 2011 年,他领导了学院空间科学研究重点的开发,2015 年至 2017 年,他共同领导了卡尔加里大学学院新地球空间技术优先研究主题的创建。他是唯一一位担任 2013 年至 2015 年担任美国国家科学基金会资助的地球空间环境建模项目科学指导委员会主席的非美国研究人员,该项目已有 30 年历史,目前担任加拿大航天局太阳地球科学咨询委员会委员。
摘要 — 在本文中,我们利用最先进的人工智能 (AI) 技术,通过微波和红外传感器,在全天候、全地表条件下对温度、湿度、表面和云参数进行卫星遥感。多仪器反演和数据同化预处理系统,人工智能版本,简称 MIIDAPS-AI,适用于极地和地球静止微波和红外探测器和成像仪,以及组合红外和微波探测器对。该算法可生成温度和湿度的垂直剖面以及表面温度、表面发射率和云参数。高光谱红外传感器的其他产品包括选定的痕量气体。从微波传感器,可以从初级产品中获得降雨率、第一年/多年海冰浓度和土壤湿度等其他产品。与传统的操作探测算法相比,MIIDAPS-AI 算法效率高,准确度没有明显下降。这种深度学习算法自动生成的雅可比矩阵可以提供可解释性机制,以建立算法的可信度,并量化算法输出的不确定性。计算增益估计为两个数量级,这为以下两种情况打开了大门:1)处理大量卫星数据,或 2)在处理相同数量的数据的情况下,提高及时性并显着节省计算能力(从而节省成本)。在这里,我们概述了 MIIDAPS-AI 的实现,讨论了它对各种传感器的适用性,并为选定数量的传感器和地球物理参数提供了初步性能评估。
战术情报、监视和侦察 (ISR) 有效载荷的功能正在从单个传感器成像器扩展到集成的系统系统架构。这些系统系统越来越多地包括多种传感模式,可以作为情报分析员的力量倍增器。目前,单独的传感模式在很大程度上是彼此独立运行的,提供了多种操作模式,但没有集成的情报产品。我们在此描述一种传感器管理系统 (SMS),旨在提供一个小型、紧凑的处理单元,能够管理飞机上的多个协作传感器系统。其目的是增加传感器的合作和协作,以实现智能数据收集和利用。SMS 架构设计为在很大程度上与传感器和数据无关,并为数据提供者和数据消费者提供灵活的网络访问。它支持预先计划和临时任务,并提供按需任务和通过数据链路连接的用户的更新。传感器和用户代理的管理通过标准网络协议进行,因此,在任务期间,任何数量和组合的传感器和用户代理(无论是在本地网络上还是通过数据链路连接)都可以随时向 SMS 注册。SMS 控制传感器数据收集,以处理数据产品的记录和路由到订阅用户代理。它还支持添加