土地覆盖和土地利用的监测和评估在自然资源管理中至关重要。遥感数据和图像处理技术已广泛应用于城市和农村地区的土地描述和变化检测。关于土地利用或土地覆盖的详细信息是各个领域的宝贵信息来源,例如城市规划[30,43]、变化检测[17]、植被监测[2],甚至军事侦察。土地覆盖变化是环境变化[38,37]、森林覆盖动态[32]和退化[21]的指标,也是生物多样性监测的方法之一[31]。此类数据可用于研究景观中发生的过程,例如各种土地覆盖之间的流动 [ 16 ],从而可以研究城市化、森林砍伐、农业强度和其他人为变化的速度。
近年来,自主导航变得越来越流行。但是,大多数现有的方法在公路导航方面有效,并利用了主动传感器(例如LIDAR)。本文使用Passive传感器,特别是长波(LW)高光谱(HSI)的遍历性估计,重点介绍了自主越野导航。我们提出了一种方法,用于选择一部分高光谱带,该方法通过设计一个最小的传感器设计带选择模块,该模块设计一个最小的传感器,该模块设计了一个最小的传感器,该模块可以测量稀疏采样的光谱带,同时共同训练语义段网络网络,以进行遍历性估计。使用我们的LW HSI数据集在包括森林,沙漠,雪,池塘和开放式田野的各种越野场景中证明了我们方法的有效性。我们的数据集包括在各种天气条件下白天和夜间收集的图像,包括具有广泛障碍的具有挑战性的场景。使用我们的方法,我们学习了所有HSI频段中的一个小子集(2%),这些子频段可以在利用所有高光谱带时获得竞争性或更好的遍历性估计精度。仅使用5个频段,我们的方法能够实现平均类别的效果,该级别仅比使用完整的256波段HSI低1.3%,而仅比使用250频段HSI实现的效果仅比使用了0.1%,这证明了我们方法的成功。
摘要 —近年来,深度学习 (DL) 对基于脑电图 (EEG) 的运动想象脑机接口 (MI-BMI) 的改进做出了重大贡献。在实现高分类准确率的同时,DL 模型的规模也不断扩大,需要大量的内存和计算资源。这对嵌入式 BMI 解决方案提出了重大挑战,该解决方案应通过本地处理数据来保证用户隐私、减少延迟和低功耗。在本文中,我们提出了 EEG-TCN ET,一种新颖的时间卷积网络 (TCN),它在只需要少量可训练参数的情况下实现了出色的准确率。其低内存占用和低推理计算复杂度使其适合在资源有限的边缘设备上进行嵌入式分类。在 BCI 竞赛 IV- 2a 数据集上的实验结果表明,EEG-TCN ET 在 4 类 MI 中实现了 77.35% 的分类准确率。通过为每个受试者找到最佳网络超参数,我们进一步将准确率提高到 83.84%。最后,我们在 Mother of All BCI Benchmarks (MOABB) 上展示了 EEG-TCN ET 的多功能性,这是一个包含 12 个不同 EEG 数据集和 MI 实验的大规模测试基准。结果表明,EEG-TCN ET 成功地推广到单个数据集之外,在 MOABB 上的表现比目前最先进的 (SoA) 好 0.25 倍。索引术语 — 脑机接口、运动意象、深度学习、卷积神经网络、边缘计算。
根据 JDL 数据融合组过程模型,在 0、1、2 和 2+/3 级进行数据和信息融合。为了支持多传感器 IMINT 和 GMTI 融合和 3D 可视化,我们构建了阿拉巴马州莫比尔码头和周边地区的 3D 站点模型,该模型允许使用我们现有的图像挖掘工具进行搜索,并提供 COP 环境,可以在其中模拟和可视化场景。我们开发了用于模拟交通和编写单个车辆移动脚本的软件,以支持场景创建。我们探索了几个新概念来支持 2+/3 级的更高级别的信息融合。一种方法源于对动态脉冲信息网络及其同步形式的神经处理的洞察。这些网络可以以关系和学习到的关联的形式绑定数据和语义知识。我们证明了使用这些网络在移动数据集中学习动态城市场景中移动车辆之间的简单关联的可行性。第二种方法涉及从图像和/或文本数据中提取知识结构。我们开发了两种从数据集中的概念共现中发现分类法的机制。我们证明了这些方法对融合图像和文本语料库的有效性。最后一种方法利用神经启发机制从移动的跟踪实体中学习正常行为模型。这些模型随后被使用
摘要 — 目标:构建一个可以在单个受试者的小型 EEG 训练集上进行训练的 DL 模型提出了一个有趣的挑战,这项工作正试图解决这一挑战。具体来说,本研究试图避免长时间的 EEG 数据收集过程,并且不组合多个受试者的训练数据集,因为这会对分类性能产生不利影响,因为受试者之间的个体间差异很大。方法:使用大约 120 次 EEG 试验对定制的具有混合增强功能的卷积神经网络进行训练,每个模型仅针对一个受试者。结果:经过修改的具有混合增强功能的 ResNet18 和 DenseNet121 模型分别实现了 0.920(95% 置信区间:0.908,0.933)和 0.933(95% 置信区间:0.922,0.945)的分类准确率。结论:我们表明,尽管本研究使用的训练数据集有限,但与同一数据集上先前研究中的其他 DL 分类器相比,设计的分类器具有更高的分类性能。
图 1:使用国际 10-20 系统从 (a) 矢状面和 (b) 轴平面 (c) 头皮角度看到的 64 个电极配置表示。注意:A= 耳垂,C = 中央,Pg = 鼻咽,P = 顶叶,F = 额叶,Fp = 额极和 O = 枕叶。
Deeptrees项目提供了用于培训,微调和部署深度学习模型的工具,以使用德国的数字矫正图计划(DOP)以20 cm的分辨率从德国的数字矫正图计划(DOP)中使用公共访问的图像进行诸如Tree Crown分割,树状特征检测和树种分类。这些DOP图像是根据“ Amtliches popographis-kartographissches Informationssystems”(AKTIS)指南进行标准化的,以确保其长期使用的可靠性和一致性[2]。利用深层python软件包,我们成功地绘制了萨克森州(137,293,260棵树)和萨克森 - 安哈尔特(81,449,641棵树)的218,742,901棵树,展示了该工具在森林,Urban和乡村环境中的可伸缩性(图1)。这些数据集为市政当局和机构提供了宝贵的见解,以管理街道树木,监测城市绿化和评估森林健康,从而实现更明智的决策和可持续的管理实践。
摘要 - 基于运动图像(MI)的脑部计算机界面(BCI)显示出有希望的运动恢复结果,术中意识检测或辅助技术控制。但是,由于脑电图(EEG)信号的高度可变性,它们主要是每次使用日期所需的冗长而乏味的校准时间,并且缺乏所有用户的可靠性,因此它们遭受了几个限制。可以使用转移学习算法在某种程度上解决此类问题。但是,到目前为止,此类算法的性能已经非常可变,何时可以安全地使用它们。因此,在本文中,我们研究了MI-BCI数据库(30个用户)上各种最先进的Riemannian转移学习算法的性能:1)受到监督和不受监督的转移学习; 2)对于目标域的各种可用培训脑电图数据; 3)会议内或会议间的转移; 4)对于Mi-BCI表演良好且较不愉快的用户。从此类实验中,我们得出了有关何时使用哪种算法的准则。重新介绍目标数据后,该目标集的几个样本被考虑在内。即使对于课内转移学习也是如此。同样,重新介入对于在会话之间难以产生稳定的运动图像的受试者特别有用。
摘要 - Kinesthetic Motor图像(KMI)是一项心理任务,如果正确执行,则在运动训练或康复中使用脑部计算机界面(BCI)可能非常相关。不幸的是,这项心理任务通常很复杂,并且可以导致其执行情况高度可变性,从而减少其潜在的好处。KMI任务如此困难的原因是因为没有标准化的方式来指导该主题在这项心理任务中。这项研究提出了一种创新的BCI,称为Grasp-It,以支持KMI任务的学习,并评估两种不同的学习方法:(i)第一个由实验者和渐进率指导的,基于渐进率的概念,(ii)第二个学习者是单独的,并且通过试验和错误进行了学习和练习。基于脑电图分析的发现和主观问卷调查验证了grasp-it bci的设计,并为KMI学习方式开辟了观点。索引项 - Kinesthetic Motor图像;大脑计算机界面; grasp-it;中风康复; BCI学习环境;人类计算机相互作用
摘要 - 基于运动图像的大脑计算机界面(MI-BCIS)是神经技术,可利用运动皮质上的感觉运动节奏的调节,分别称为事件相关的去同步(ERD)(ERD)和综合化(ERS)。ERD/ERS的解释与用于估计它们的基线的选择直接相关,并可能导致误导ERD/ERS可视化。实际上,在BCI范式中,如果两次试验被几秒钟分开,则将基线接近上一个试验结束的基线可能会导致ERD的过度估计,而将基线的基线太接近即将到来的试验可能会导致ERD估计不足。在MI-BCI研究中,这种现象可能会引起对ERD/ERS现象的功能误解。这也可能会损害MI与REST分类的BCI性能,因为这种基准通常被用作静止状态。在本文中,我们建议研究几个基线时间窗口选择对ERD/ERS调制和BCI性能的影响。我们的结果表明,考虑选定的时间基线效应对于分析MI-BCI使用过程中ERD/ERS的调制至关重要。