摘要:基于脑电图 (EEG) 的脑机接口 (BCI) 研究广泛应用于轮椅控制。用户的能力是 BCI 效率的一个因素。因此,我们专注于 BCI 任务和协议,以从个人用户的稳健 EEG 特征中获得高效率。本研究提出了一种基于任务的大脑活动来获得 alpha 波段的力量,其中包括闭眼以获得枕叶区域的 alpha 反应、注意向上箭头以获得额叶区域的 alpha 反应以及想象的左/右运动以获得左/右运动皮层与 alpha 事件相关的去同步。EPOC X 神经耳机用于获取 EEG 信号。我们还通过推荐运动想象任务来提出用户在肢体运动范式的运动意象会话中的熟练程度。使用所提出的系统,我们验证了特征提取算法和命令翻译。 12 名志愿者参加了实验,并使用传统的运动想象范式来比较效率。利用用户的运动想象能力,左右命令的平均准确率达到 83.7%。通过用户熟练程度推荐的 MI 范式比传统 MI 范式的准确率高出约 4%。此外,模拟轮椅的实时控制结果显示,基于时间条件的效率很高。与基于操纵杆的控制相比,执行相同任务的时间结果仍然大约长三倍。我们建议使用用户熟练程度为初学者推荐个性化的 MI 范式。此外,所提出的 BCI 系统可用于严重残疾人士的电动轮椅控制。
摘要 —基于运动想象的脑机接口已广泛应用于神经康复。运动想象脑电图 (MI-EEG) 是指人们想象自己的身体在没有实际动作的情况下运动的脑电信号。患有运动障碍的人可以通过脑电图 (EEG) 解码来控制外部设备。然而,由于脑电图的复杂性和非平稳性,解码仍然存在各种挑战。如何提高脑电图解码的准确性和鲁棒性仍然是一个有待研究的关键问题。在本文中,首次引入了一种基于自注意的卷积神经网络 (CNN) 结合频带-时间带共同空间模式 (FTBCSP) 进行四类 MI-EEG 分类。基于自注意的 CNN 用于原始数据以获得通道权重并强化空间信息。共同空间模式 (CSP) 是一种广泛应用于 MI-EEG 解码的算法,可以提取两个类之间的判别特征。将经过 CSP 算法处理后的特征与上述空间信息相结合完成分类。我们在公开的多类 MI 数据集上验证了该方法,平均准确率为 78.12%,优于其他传统方法。证明了所提方法充分利用了脑电信号的时空信息,在公开数据集上获得了优异的分类性能。
摘要 — 脑电图是一种有效的方法,它以非侵入方式在用户和计算机之间提供双向通路。在本研究中,我们采用视觉图像数据来控制基于 BCI 的机械臂。随着用户执行任务,视觉意象会随着时间的推移增加视觉皮层的 alpha 频率范围的功率。我们提出了一种深度学习架构,仅使用两个通道来解码视觉图像数据,并且我们还研究了具有显着分类性能的两个 EEG 通道的组合。使用所提出的方法时,离线实验中使用两个通道的最高分类性能为 0.661。此外,使用两个通道(AF3-Oz)的在线实验中的最高成功率为 0.78。我们的结果提供了使用视觉图像数据控制基于 BCI 的机械臂的可能性。
迁移学习 (TL) 已广泛应用于基于运动想象 (MI) 的脑机接口 (BCI),以减少新受试者的校准工作量,并表现出良好的性能。虽然基于闭环 MI 的 BCI 系统在脑电图 (EEG) 信号采集和时间滤波之后,在向外部设备发送控制信号之前包括空间滤波、特征工程和分类模块,但之前的方法仅考虑其中一两个组件中的 TL。本文提出可以在基于 MI 的 BCI 的所有三个组件(空间滤波、特征工程和分类)中考虑 TL。此外,在空间滤波之前特别添加数据对齐组件也非常重要,以使来自不同受试者的数据更加一致,从而促进后续的 TL。在两个 MI 数据集上的离线校准实验验证了我们的建议。特别是,整合数据对齐和复杂的 TL 方法可以显著提高分类性能,从而大大减少校准工作量。
摘要:运动想象 (MI) 任务的分类为残障人士与脑机接口环境的连接提供了一种强大的解决方案。精确选择脑电图 (EEG) 信号的可调 Q 小波变换 (TQWT) 的均匀调谐参数是一项艰巨的任务。因此,本文提出了稳健的 TQWT,用于自动选择最佳调谐参数,以准确分解非平稳 EEG 信号。探索了三种进化优化算法来自动调整稳健 TQWT 的参数。使用分解的均方误差的适应度函数。本文还利用拉普拉斯分数进行通道选择以选择主通道。使用最小二乘支持向量机分类器的不同核对从稳健 TQWT 子带中提取的重要特征进行分类。径向基函数核提供了 99.78% 的最高准确率,证明了所提出的方法优于使用相同数据库的其他最先进方法。
摘要。基于脑电图(EEG)基于脑部计算机界面(BCI)的通道选择已被广泛研究了二十年,其目标是选择可以提高BCI的总体解码功效的最佳特定主题通道。随着基于深度学习(DL)模型的出现,出现了需要新的视角和新技术来进行渠道选择。在这方面,与受试者无关的通道选择相关,因为使用交叉主体数据训练的DL模型提供了出色的性能,并且尚未完全了解脑电图特征固有的主体间变异性在受试者独立的DL训练中的影响。在这里,我们提出了一种新的方法,用于使用层相关性传播(LRP)和神经网络修剪在基于DL的运动图像(MI)-BCI中实现主题独立通道选择。使用韩国大学(KU)EEG数据集的Deep Convnet和62通道MI数据进行了实验。使用我们提出的方法,由于LRP选择了高度相关的通道,因此我们在受试者独立的分类精度中降低了61%的通道数量(p = 0.09)。LRP相关的渠道选择提供了明显更好的精度,同时使用频道总数的40%,精度的差异范围为5.96%至1.72%。仅使用通道总数的16%的适应性稀疏LRP模型的性能与适应的基线模型相似(p = 0.13)。此外,适应的稀疏LRP模型的准确性仅使用频道总数的35%超过了改编的基线模型的准确性(p = 0.81)。LRP选择的通道的分析证实了选择的神经生理学合理性,并强调了MI-EEG分类中运动,顶叶和枕通道的影响。
通讯 * Samaa S. Abdulwahab电气工程系,伊拉克巴格达大学。电子邮件:316393@student.uotechnology.edu.iq摘要人类大脑与环境通信的能力通过使用基于脑部计算机界面(BCI)的机制已成为现实。脑电图(EEG)已成为一种非侵入性的大脑连接方式。传统上,这些设备用于临床环境中来检测各种脑部疾病。但是,随着技术的进步,Emotiv和Neurosky等公司正在开发低成本,易于便携的基于EEG的消费级设备,这些设备可用于游戏,教育等各种应用领域。本文讨论了已应用脑电图的部分,以及它如何证明对患有严重运动障碍,康复的人以及与外界进行交流的一种形式有益。本文研究了SVM,K-NN和决策树算法对EEG信号进行分类的使用。为了最小化数据的复杂性,最大重叠离散小波变换(MODWT)用于提取EEG特征。使用滑动窗口技术计算每个窗口样本中的平均值。向量机(SVM),K-Nearest邻居,并优化决策树加载特征向量。关键字:EEG,BCI,运动图像,MODWT,SVM,K-NN,决策树,Emotiv Epoc+
摘要:脑机接口(BCI)将用户的运动想象(MI)等想法转化为对外部设备的控制。然而,一部分人无法有效控制BCI,他们被定义为BCI文盲。BCI文盲受试者的主要特点是分类率低和可重复性差。针对MI-BCI文盲问题,提出一种基于多核学习的分布自适应方法,使源域和目标域之间的特征分布更加接近,同时最大化类别可分性。受到核技巧的启发,采用基于多核的极限学习机对带标签的源域数据进行训练,以找到一个最大化数据可分性的新的高维子空间,然后使用基于多核的最大均值差异进行分布自适应,以消除新子空间中域间特征分布的差异。针对MI-BCI文盲的特征维数较高,本文采用能够有效处理高维特征且不需要额外交叉验证的随机森林作为分类器,并在公开数据集上对所提方法进行了验证。实验结果表明,所提方法适用于MI-BCI文盲,并能降低域间差异,从而降低跨受试者和跨会话的性能下降。
摘要:为降低脑机接口(BCI)的准确率差异,提出了一种新的运动想象(MI)分类白化技术。该方法旨在提高脑电图特征脸分析对 BCI 的 MI 分类的性能。在 BCI 分类中,为了获得优异的分类结果,受试者之间的准确率差异对准确率本身很敏感。因此,借助 Gram-Schmidt 正交化,我们提出了一种 BCI 通道白化(BCICW)方案来最小化受试者之间的差异。新提出的 BCICW 方法改善了真实数据中 MI 分类的方差。为了验证和检验所提出的方案,我们使用 MATLAB 仿真工具对 BCI 竞赛 3 数据集 IIIa(D3D3a)和 BCI 竞赛 4 数据集 IIa(D4D2a)进行了实验。对于 D3D3a,使用基于 Gram–Schmidt 正交化的 BCICW 方法时,方差数据 (11.21) 远低于使用 EFA 方法 (58.33) 时,对于 D4D2a,方差数据从 (17.48) 降至 (9.38)。因此,所提出的方法可有效用于 BCI 应用的 MI 分类。
摘要 — 目的:本文提出了一种基于图信号处理 (GSP) 的方法,通过获取任务特定的判别特征来解码两类运动想象脑电图数据。方法:首先,使用图学习 (GL) 方法从脑电图信号中学习特定于受试者的图。其次,通过对每个受试者图的归一化拉普拉斯矩阵进行对角化,获得正交基,使用该基计算脑电图信号的图傅里叶变换 (GFT)。第三,将 GFT 系数映射到判别子空间,以使用由 Fukunaga-Koontz 变换 (FKT) 获得的投影矩阵区分两类数据。最后,对 SVM 分类器进行训练和测试,以根据所得特征的方差来区分运动想象类别。结果:在 BCI 竞赛 III 的数据集 IVa 上评估所提出的方法,并将其性能与 i) 使用由皮尔逊相关系数构建的图上提取的特征和 ii) 三种最先进的替代方法进行比较。结论:实验结果表明,所提出的方法优于其他方法,反映了整合 GL、GSP 和 FKT 元素的额外优势。意义:所提出的方法和结果强调了整合 EEG 信号的空间和时间特征在提取能够更有力地区分运动想象类别的特征方面的重要性。