关节固定术,后外侧或后外侧技术与后室间技术,包括椎板切除术和/或椎间盘切除术,足以制备空间(用于减压除外),单个空间和段;每个其他空间和段(除了主要过程外,除了代码外分别列表)MSK 7/1/2023 10/1/2023 22800关节固定术,后部,用于脊柱变形,有或没有铸造;多达6个椎骨段MSK MSK 7/1/2023 10/1/2023 22802关节固定术,后部,用于脊柱畸形,有或没有铸造; 7至12椎段MSK MSK 7/1/2023 10/1/2023 22804关节固定术,后部,用于脊柱畸形,有或没有铸造; 13或更多椎骨段MSK MSK 7/1/2023 10/1/2023 22808关节固定术,前部,用于脊柱畸形,有或没有铸造; 2至3个椎骨段MSK MSK 7/1/2023 10/1/2023 22810关节固定术,前部,用于脊柱畸形,有或没有铸造; 4至7个椎骨段MSK MSK 7/1/2023 10/1/2023 22812关节固定术,前部,用于脊柱畸形,有或没有铸造; 8个或更多椎骨段MSK 7/1/2023 10/1/2023
•提供一个简单的计划,以概述合作伙伴计划的特定措施,以超越上述计划要求。这样做,EPA可能能够协调和传达合作伙伴的活动,提供EPA代表,或在能源之星通讯,能源之星网站上包括有关该活动的新闻。该计划可能与提供计划的活动列表或合作伙伴希望EPA意识到的里程碑一样简单。例如,活动可能包括:(1)通过在两年内转换整个产品线以满足Energy Star指南的可用性; (2)每年两次通过特殊店内展示来证明能源效率的经济和环境利益; (3)向用户(通过网站和用户手册)提供有关节能功能和能源之星认证产品的操作特征的信息; (4)通过与EPA合作在一个印刷广告和一项现场新闻活动中合作,建立了对能源之星伙伴关系和品牌标识的认识。
开幕主题演讲(周日 17:30)将在 Hotel Suisse(Rue du Village 55)举行,随后将举行非正式的欢迎招待会,提供葡萄酒和小吃。本周的所有其他演讲和海报展示会将在 Palladium 会议中心举行(见日程安排)。海报应在周一至周三的整个会议期间展示,以便所有参与者有足够的观看时间。1 月 13 日星期一、14 日星期二和 15 日星期三下午将举行三场海报展示会(见日程安排和海报图)。请演讲者最迟于演讲当天 15:00 在会议室检查他们的演讲。Hotel Suisse 的休息室和咖啡厅以及 Palladium 会议室均提供免费 WiFi 上网。Champéry 有几家餐厅,包括 Palladium 的一家(全天营业,包括晚上)。由于镇上的许多餐厅规模相对较小,因此建议您提前预订餐桌,尤其是如果您与一大群人一起去的话。Hotel Suisse 或 Palladium 的工作人员可以为您提供帮助。厨房通常在 21:30 左右关闭。周四晚上将在 Le Gueullhi 餐厅(Route de la Fin 11)举行告别晚宴。所有注册参与者均可免费享用晚餐,但不包括饮料。如果您参加活动有任何变化,请在 1 月 14 日星期二之前联系注册台的工作人员
荧光标签的光漂白在单分子和超分辨率显微镜下构成了主要限制。常规的光稳定方法,例如去除氧气和添加高浓度的光稳定添加剂,通常需要仔细的荧光团选择,并且可能破坏生物学环境。为了解决这些局限性,我们开发了一种模块化和微创光稳定方法,该方法利用了DNA介导的光稳定剂直接传递到成像位点。在较低的激发强度下,DNA介导的策略优于基于溶液的方法,以显着较低的添加剂浓度实现有效的光稳定。然而,在较高的激发强度下,单个光稳定器分子的稳定性成为限制因素。为了克服这一点并减少了DNA-Paint实验中的局部化损失,我们还实施了恢复方案,在成像位点不断补充光稳定剂。我们进一步扩展了细胞成像的方法,证明了3D-DNA涂料测量中的定位率和精度提高了。DNA介导的光稳定化为禁止高添加剂浓度的成像应用提供了有希望的解决方案。其模块化启用适应性
摘要 - 由于操作员的熟练程度和成像情况的差异,超声检查的次数急剧增加,低质量的超声成像已大大增加,因此对诊断准确性造成了严重负担,甚至导致重新诊断的风险在关键病例中重新开始诊断。为了帮助临床医生选择高质量的超声图像并确保准确的诊断,我们引入了超声波QBench,这是一种全面的基准,该基准在系统上可以评估多模式大型语言模型(MLLMS),以实现超声图像的质量评估任务。超声 - Qbench建立了从不同来源收集的两个数据集:IVUSQA,由7,709张图像和心脏硫酸氢菌组成,包含3,863张图像。这些图像包含常见的超声成像工件由专业的Ul-Trasound专家注释,并分为三个质量:高,中和低。为了更好地评估MLLM,我们将质量评估任务分解为三个维度:定性分类,定量评分和比较评估。对7个开源MLLM和1个原则的评估表明,MLLM具有超声图像质量分类中低级视觉任务的初步功能。我们希望这种基准能激发研究界的深入研究和增强MLLM在医学成像任务中的未开发潜力。索引术语 - 大型大语言模型(MLLM),质量评估,超声图像
摘要 - 3D对象检测对于自动驾驶(AD)和高级驾驶员辅助系统(ADA)至关重要。但是,大多数3D检测器优先考虑检测准确性,通常会忽略实际应用中的网络推理速度。在本文中,我们提出了基于4D MMWave雷达点云的实时可靠的3D对象检测器RadarNext。它利用可重新参数的神经网络来捕获多尺度功能,降低记忆成本并加速推理。此外,为了突出雷达点云的不规则前景特征并抑制背景混乱,我们提出了一个可变形的可变形前景增强网络(MDFEN),以确保检测准确性,同时小型地牺牲了速度的牺牲和参数的过多。dive viewt和tj4dradset数据集的实验结果验证了Radarnext的出色性能和效率,使用我们提出的MDFEN实现了50.48和32.30映射的变体。值得注意的是,我们的radarnext变体在RTX A4000 GPU上达到了超过67.10 fps的推理速度,而Jetson AGX Orin上的推理速度则达到了28.40 fps。这项研究表明,Radarnext带来了基于4D MMWave雷达的3D感知的新颖有效的范式。索引项 - 4D mmwave雷达; 3D对象检测;基于边缘的感知;轻量级感知模型
摘要 - 本研究提出了一个强大的脑肿瘤分类框架,首先是对 233 名患者的细致数据整理。该数据集包含各种 T1 加权对比增强图像,涵盖脑膜瘤、神经胶质瘤和垂体瘤类型。采用严格的组织、预处理和增强技术来优化模型训练。所提出的自适应模型采用了一种尖端算法,利用了自适应对比度限制直方图均衡化 (CLAHE) 和自适应空间注意。CLAHE 通过根据每个区域的独特特征调整对比度来增强灰度图像。通过注意层实现的自适应空间注意动态地为空间位置分配权重,从而增强对关键大脑区域的敏感性。该模型架构集成了迁移学习模型,包括 DenseNet169、DenseNet201、ResNet152 和 InceptionResNetV2,从而提高了其稳健性。 DenseNet169 充当特征提取器,通过预训练权重捕获分层特征。批量归一化、dropout、层归一化和自适应学习率策略等组件进一步丰富了模型的适应性,减轻了过度拟合并在训练期间动态调整学习率。技术细节(包括使用 Adam 优化器和 softmax 激活函数)强调了模型的优化和多类分类能力。所提出的模型融合了迁移学习和自适应机制,成为医学成像中脑肿瘤检测和分类的有力工具。它对脑肿瘤图像的细致理解,通过自适应注意力机制的促进,使其成为神经成像计算机辅助诊断的一项有希望的进步。该模型利用具有自适应机制的 DenseNet201,超越了以前的方法,实现了 94.85% 的准确率、95.16% 的精确率和 94.60% 的召回率,展示了其在具有挑战性的医学图像分析领域提高准确率和泛化的潜力。关键词:NeuroInsight、脑肿瘤分类、医学影像、自适应深度学习、自适应框架。1. 简介通过整合最先进的技术,特别是在深度学习领域,医学诊断领域经历了前所未有的进步。这一进步的一个显著例子是使用自适应深度学习进行脑肿瘤分期分类,这是一种新颖的方法,它不仅利用了深度学习的能力,而且还能动态适应脑肿瘤分期固有的复杂性,在诊断中呈现出更高的精确度和个性化水平。在医疗保健领域,脑肿瘤因其表现形式多样、严重程度各异而成为一项艰巨的挑战。传统的肿瘤分类方法经常难以准确描述肿瘤分期的细微细节。在此背景下引入自适应深度学习标志着一种范式转变,它赋予诊断过程一种自学习机制,该机制会随着遇到的每个数据集不断发展和完善自身[1] – [4]。这种开创性方法的基础要素是一种先进的深度学习算法,其特点是动态和自适应性。自适应深度学习方法与典型的深度学习模型不同,它不断修改其参数以响应输入数据的独特特征,而不是依赖于固定的、预定的架构。这种自适应能力确保了对与脑肿瘤分期相关的复杂性的更细致入微和针对具体情况的理解[5] – [7]。
g天文释放肽受体(GRPR)或bombesin receptor 2是一种在几种实体瘤中过表达的膜受体,包括前列腺肿瘤,乳腺肿瘤,胃肠道基质肿瘤(GISTS),小细胞和非细胞和非细胞和非 - 小细胞肺癌,gastrino-Mas-mas-Mas-mas,结肠癌,蛋白癌,蛋白蛋白癌,蛋白蛋白蛋白酶,卵巢癌。这个目标增加了疗法的武术,因为许多光学含量的放射性药物已开始使用。Wang等人的文章。在《核医学杂志》中阐明了GIST中的GRPR成像(1)。PET/CT使用[68 GA] Ga-Nota-RM26(一种靶向GRPR靶向放射性药物),检测到16名患者的18个病理结构的GIST GIST病变中有88.9%,而[18 F] -FDG PET/CT仅检测到50%(p,0.01)。对于[68 Ga] ga- nota-rm26, suv max大大高于[18 f] -fdg(平均值,17.07 6 19.57 vs. 2.28 6 1.65; p,0.01),并且与免疫组织上的grpr不合理。作者发现GRPR PET/CT成像有助于将GIST与良性平滑肌瘤和Schwannomas区分开,基于GIST的SUV Max较高(1)。这些结果表明,以GRPR为目标的成像可能与选定患者的手术计划和治疗决策有关。然而,根据Wang等人提出的SUV最大临界值,异位胰腺与GIST更难区分。GIST是由肌肉肌的骨髓丛内的cajal间质细胞引起的间质肿瘤,典型地在胃中(60%),空肠和回肠(30%),或者,较少频率地,较少的,duododenum,duododenum,duododenum,duododeNum,colon,colon,or eypophagus。诊断时的平均年龄为60 - 65岁,没有性别偏好。GIST与在琥珀酸脱氢基因酶亚基中的一个中激活试剂盒(75%),血小板衍生的生长因子受体A(10%)或频繁突变(例如NF-1突变)或缺乏症有关。GIST通常以局部疾病的形式出现,但是复发和转移经常出现。先进的GIST通过手术和酪氨酸激酶抑制剂(例如,伊马替尼第一,苏替尼,雷莫非尼)的结合进行治疗,但患者随着时间的推移会发展出TKI耐药性。Reubi等人报道了在原发性和转移性GIST中GRPR和其他神经肽受体的高表达。 使用受体放射率,为设定基础在原发性和转移性GIST中GRPR和其他神经肽受体的高表达。使用受体放射率,为
摘要:检测从尖端 - 样品连接散射的电磁辐射已使衍射限制并开始了Polariton纳米影像的繁荣场。但是,大多数技术仅解决散射辐射的振幅和相对相。在这里,我们利用了对超短散射脉冲的场分辨检测来绘制空间和时间上表面极化子的动力学。等离子体极化子是研究的理想模型系统,证明了如何通过直接的数学方程式和归一化方法在时间域中可视化和建模传播模式。这种新颖的方法可以直接评估极化子的组和相速度以及阻尼。此外,它与泵 - 探头方案的结合特别强大,可在光激发时追踪极化子繁殖的亚周期变化。我们的方法很容易适用于其他量子材料,提供了一种多功能工具来研究极性子的超临时空间时空动力学。关键字:Terahertz表面等离子体极化子,近场光学显微镜,S-SNOM,野外分辨,石墨烯,时间分辨,超时地图,相位速度,组速度,群体速度,全光照控制