我是加州大学欧文分校计算机科学系的助理教授,也是仿生架构与系统实验室 (BIASLab) 的主任。我的团队正在研究脑启发计算、机器学习和嵌入式系统领域的各种实际问题。我们的研究目标是设计实时、稳健且透明的认知学习系统,以紧密模仿大脑特性。我们还为基于光子的传感器设计了一个安全且可扩展的学习框架,用于在物联网系统中对大量设备进行学习/计算。PI Imani 于 2020 年获得加州大学圣地亚哥分校计算机科学与工程系博士学位。他拥有出色的出版记录,在顶级 IEEE/ACM 会议和期刊上发表了 140 多篇论文,拥有 20 项美国专利,在 Google Scholar 上的引用次数为 4,100 次,h 指数为 38。 PI 的贡献引领了受大脑启发的超维计算的新方向,从而实现超高效的实时学习和认知支持。他的研究也是开启多个工业和政府研究项目的主要举措,包括 SRC 和 DARPA。PI Imani 的研究获得了多项奖项,包括 Bernard 和 Sophia Gordon 工程领导力奖和多个顶级会议的最佳论文提名奖。PI 在向公司和政府机构成功转让技术方面有着悠久的历史。例如,PI 目前在受大脑启发的超维计算方面的工作已与英特尔、ARM、IBM、高通和思科共享。PI 在神经符号人工智能方面所做的工作由 SRC/DARPA 资助,并转移到英特尔和 IBM,并激发了利用受大脑启发的推理的努力,随后由思科和谷歌资助并转移到他们。由 SRC/DARPA 和其他公司资助的内存处理工作已在高通、德州仪器和英特尔的产品组中得到应用。PI 当前的物联网分布式学习项目目前正在转移到空军和恩智浦半导体,并且是过去几年 PI 团队与空军/恩智浦半导体密切合作的重要组成部分。作为国防部资助项目的一部分,PI 在内存处理硬件中设计用于超维编码和分类,包括将 HDC 与公钥加密相结合,并表明 HDC 非常适合激光雷达/雷达数据的分类。这项工作目前正在评估中,以纳入英特尔的一款存储产品。
摘要 - 现代计算系统在有效执行学习任务方面存在重大问题。在本次演讲中,我将介绍一种新的大脑启发式计算系统,该系统支持各种学习任务,同时提供比现有平台高得多的计算效率和稳健性。我的平台采用超维 (HD) 计算,这是一种实现大脑功能原理的替代计算方法:(i) 快速学习,(ii) 对噪声/错误的鲁棒性,以及 (iii) 交织的内存和逻辑。这些特性使 HD 计算成为当今资源有限的嵌入式设备以及具有高噪声和多变性问题的深纳米级技术的未来计算系统的有前途的解决方案。为了利用 HD 计算以内存为中心的特性,我利用新兴技术来实现内存处理,从而能够进行高度并行计算和减少数据移动。我还将展示这种架构如何加速深度学习等广泛的大数据应用。
