摘要:虽然已知来自Angelicae Dahuricae的同含同胞毒素具有抗病毒,抗糖尿病,抗炎和抗肿瘤作用,但其潜在的抗肿瘤机制到目前为止仍然难以捉摸。因此,在肝细胞癌(HCCS)中探索了同氨基肌蛋白的凋亡机制。在这项研究中,同层抑制了HUH7和HEP3B HCC的生存能力,并增加了SubG1凋亡部分,并且也废除了HUH7和HEP3B细胞中Pro-Poly-ADP核糖聚合酶(Pro-parp)和Pro-Caspase 3的表达。另外,同氨基氨基氨基氨基蛋白废除了细胞周期蛋白D1,Cyclin E1,CDK2,CDK4,CDK6,P21作为HUH7和HEP3B细胞中与G1相阻滞相关的蛋白的表达。有趣的是,Isoimimporatorin通过免疫沉淀(IP)降低了C-Myc和Sirtuin 1(SIRT1)的表达和结合,HUH7细胞中的结合评分为0.884。此外,同层抑制剂抑制了蛋白酶体抑制剂MG132对C-MYC的过表达,并抑制了HUH7细胞中环己酰胺治疗的C-MYC稳定性。总体而言,这些发现支持了新的证据,即C-Myc和SIRT1的关键作用至关重要地参与HCC中的同性氨基氨基肌蛋白诱导的凋亡,这是肝癌治疗中有效的分子靶标。
C9ORF72中内含子GGGGCC的重复膨胀是肌萎缩性侧面硬化症和额颞痴呆的常见遗传原因。重复序列均以意义和反义方向转录,以产生不同的二肽重复蛋白,其中poly(ga),poly(gr)和pr pr(pr)与神经变性有关。poly(pr)与RNA结合可能有助于毒性,但是尚未对转录组对poly(pr)-RNA结合的分析进行分析。因此,我们在人类细胞中进行了交联和免疫沉淀(夹)分析,以识别py(PR)的RNA结合位点。我们发现poly(PR)与近600个RNA结合,序列Gaaga富含结合位点。体外实验表明,聚(Gaaga)RNA与对照RNA高的(PR)结合pol(PR),并诱导聚(PR)的相分离为冷凝物。这些数据表明poly(PR)优先结合含Poly(Gaaga)的RNA,这可能具有生理后果。
6。分子生物学2学生对课程的描述必须了解剪接RNA的碱基,mRNA向蛋白质的翻译,遗传密码,原核生物和真核生物中的转录调节以及调节性RNA的多样性和功能。 div>教师或助手将在课程的主题,科学文章的讨论以及对主题的评论,评估活动(例如Kahout和类似的评估活动)上进行演讲。 div>该课程的另一个轴由学生的分子生物学方法的介绍组成。 div>每个学生在20到30分钟内提出了一种方法。 div>这旨在为学生提供基础,以了解分子生物学和基因组科学中最常见方法的概念和范围。 div>During previous courses the following methods were presented: electrophoresis & nucleic acid extraction, nucleic acid hybridization (retention supports, southern and northern type hybridations), DNA amplification (PCR, RT-PCR, real-time PCR), DNA sequencing (chemistry and enzymatic), recombinant DNA techniques (restriction, restriction, restriction, restriction Ligation, directed mutagenesis), new cloning systems (gateway, mole, ...), protein analysis (SDS-Page, Western blot), protein analysis II (Elisa, immunoprecipitation), immunohistochemistry, eukaryotic expression systems (transfection methods, stable transfections, transitional transfections), protein interactions- DNA (EMSA, Footprinting, CrossLinking), generation of genetic models (敲击,敲门,CRISPR/CAS9),干扰RNA,蛋白质 - 蛋白质相互作用系统(双杂种,一种杂种,蛋白质片段互补的测试),
在过去的十年中,下一代测序(NGS)的突破导致全基因组中的OMICS数据的体积和复杂性增加(Bulk)(Bulk)(Lander等,2001; Venter等,2001),并且在单细胞水平上更深。NGS allowed the scienti fi c community to study various biological mechanisms such as genetics (whole- genome sequencing), gene expression (RNA-seq), and epigenetics [DNA methylation (e.g., whole-genome bisul fi te sequencing), chromatin accessibility (ATAC-seq), chromatin immunoprecipitation assays with sequencing (e.g., ChIP-seq对于组蛋白标记)]导致高维度数据(Reuter等,2015)。除了基因组范围的方法外,单细胞技术还提供了研究不同模态(例如基因表达(SCRNA-SEQ)和染色质可及性(SCATAC-SEQ))的机会(Heumos等人,2023年)。这项技术比大量数据显示出不同的优势,尤其是在捕获肿瘤微环境的克隆结构和细胞类型组成方面。此外,全球科学社区和财团,例如癌症基因组图集(TCGA)(TOMCZAK等人,2015年),国际癌症基因组联盟(ICGC)(国际癌症基因组等,2010),,Martens和Blueprint(Martens and Stunnenberg,2013),人类Cell Atlas(HCA)(HCA)(HCA)(LINDEN)(LIND),综合。每个人都可以通过发布OMICS数据和元数据提供相关的结果,从而为进一步的探索和数据集成提供了机会。但是,可以通过机器学习(ML)算法来分析大量复杂的OMIC数据,以发现生物标志物或预测性特征,以更好地患者分层和治疗选择。
转录因子 (TF) 介导的基因调控通常在致癌过程中被破坏。TF 结合位点的 DNA 甲基化状态可能决定相应基因的转录活性。研究表明,芪类多酚,如紫檀芪 (PTS),可通过重塑 DNA 甲基化和基因表达发挥抗癌作用。然而,这些影响背后的机制仍不清楚。本文探讨了 PTS 处理的 MCF10CA1a 侵袭性乳腺癌细胞中致癌 TF OCT1 结合与从头 DNA 甲基转移酶 DNMT3B 结合之间的动态关系。使用染色质免疫沉淀 (ChIP) 和下一代测序,我们确定了 47 个基因调控区,这些区域在 PTS 作用下 OCT1 结合减少,DNMT3B 结合丰富。大多数这些基因被发现具有致癌功能。我们选择了三个候选基因 PRKCA、TNNT2 和 DANT2,以进一步研究机制,同时考虑 PRKCA
摘要:特异性抗体对于蛋白质复合物的细胞和组织表达、生化和功能分析必不可少。然而,制备特异性抗体通常费时费力。将内源性蛋白质的表位标记在适当的位置可以克服这个问题。在这里,我们使用 AlphaFold2 蛋白质结构预测研究了表位标签位置,并结合 CRISPR-Cas9 基因组编辑和电穿孔 (i-GONAD) 开发了 Flag/DYKDDDDK 标签敲入 CaMKII α 和 CaMKII β 小鼠。使用 i-GONAD,可以将长达 200 bp 的小片段插入目标基因的基因组中,从而实现高效便捷的小表位标记。使用市售的抗 Flag 抗体进行实验,可以通过蛋白质印迹、免疫沉淀和免疫组织化学轻松检测内源性 CaMKII α 和 β 蛋白。我们的数据表明,通过 i-GONAD 生成 Flag/DYKDDDDK 标签敲入小鼠是一种有用且方便的选择,特别是在没有特定抗体的情况下。
摘要◥翻译后修饰对于调节转录因子p53至关重要,该转录因子p53以高度合作的方式结合DNA,以控制众多肿瘤抑制程序的表达。在这里,我们在DNA结合域中在高度保守的丝氨酸残基(人类S183/ S185,小鼠S180)的磷酸化中降低了DNA结合的合作性,从而显示了DNA结合的合作性。为探索这种抑制性磷酸化在体内的作用,生成了新的磷酸化 - 确定的p53-S180A敲入小鼠。染色质免疫沉淀测序和S180A敲入细胞的RNA测序研究表明DNA结合增强并增加了靶基因表达。在体内,这转化为骨髓的组织特异性脆弱性,导致造血干细胞的延伸,并损害DNA损伤后造血的适当再生。中位寿命显着从709天的野生型降低到仅568天
德克萨斯大学西南医学中心细胞生物学系 Kevin Mark 博士的实验室提供博士后培训职位,研究蛋白质质量控制和降解如何在发育过程中调节基因表达。Mark 实验室有几个令人兴奋的项目,涉及了解泛素-蛋白酶体系统靶向转录和翻译机制以影响细胞过程的机制,以及此类途径的破坏如何导致癌症和神经退行性疾病。博士后学者将有机会在令人兴奋、快速发展的生物医学科学领域工作,同时学习核酸和蛋白质生物学的最新方法。我们的实验室使用多种方法进行研究,包括基因组编辑、流式细胞术、共聚焦显微镜和蛋白质组学,以及标准生化技术,如克隆、免疫沉淀、蛋白质印迹和 RNAseq。博士后候选人将可以使用德克萨斯大学西南分校的众多共享设施,这些设施为高通量筛选、下一代测序、活细胞成像、质谱和低温电子显微镜 (cryo-EM) 提供支持。
方法:研究DNA羟基甲基化和发育暴露于常见污染物之间的关系,一个协作的NIEHSSPOSSENSED CONSORERTIUM,Target II启动了纵向小鼠研究,研究了发育范围的研究,以实现人为含有人含量的苯甲酸酯化剂DI(2-甲基甲基甲苯基)的(2-甲基甲苯甲苯甲苯甲状腺己)和dehp)(Dehp)(Dehp)(Dehp)(p),per(dehp)。将饮用水中的25毫克DEHP/kg食物(约5 mg DEHP/kg体重)或32 ppm乙酸的暴露量用于无效的成年雌性小鼠。暴露在繁殖前2周开始,并在整个怀孕和哺乳期继续持续,直到后代21天大。在5个月时,收集了围产期暴露的后代血液和皮质组织,共有25只雄性小鼠和17只雌性小鼠(每组织和暴露于5 - 7)。DNA,并使用羟基甲基化DNA免疫沉淀测序(HMEDIP-SEQ)测量羟甲基。使用0.15的FDR临界值进行了暴露组,组织类型和动物性别的差异峰值和途径分析。
DNA甲基化在发展和分化中的基因表达中起着至关重要的作用,以及多发性硬化症,糖尿病,精神分裂症,衰老和癌症等疾病。能够访问大量基因或整个基因组的表观遗传信息的能力,应极大地促进对细胞中基因调节的性质以及细胞与环境之间相互作用的表观依赖性机制的理解。这种能力对于人类表观遗传疾病和辅助繁殖的研究也应具有重要意义。基于微阵列的DNA甲基化分析技术已开发出来以实现这一目标。这些甲基化的OD可以分为三个主要类别的甲基化状态询问:(1)歧视甲基诱导的C至T过渡,(2)通过甲基化敏感限制酶裂解基因组DNA,以及(3)用甲基结合的蛋白质或抗甲基甲基甲基甲基化的甲基甲基甲基化的甲基甲基化蛋白质。这些方法中的每一种都有其自身的局限性。例如,甲基化敏感的限制酶不能询问每个CpG位点,而免疫原理方法无法以任何靶向序列以单碱基分辨率提供甲基化信息。对于基于亚硫酸盐的方法,挑战在于基因组DNA的亚硫酸盐转化后基因组复杂性的降低。特定于目标的探针选择和杂交特异性仍然是主要技术障碍。
