摘要:牙科植入学是牙科最动态发展的领域之一,尽管发展了临床知识和新技术,但仍与许多可能导致植入物丧失或疾病的发展相关,包括植入物周围炎。由于口服微生物群的发展以及免疫失衡引起的伴随炎症,牙齿植入物无法产生适当的骨整合过程的事实之一。本研究旨在介绍有关口腔菌群营养不良的影响以及免疫系统对牙科植入学观察到的失败过程的影响。证据表明,这些生物学障碍和植入物并发症之间存在很强的关系,通常是由于骨整合不当,植入物的致病生物膜以及加剧的炎症反应而引起的。植入物设计中的技术增强功能可以减轻病原体定植和炎症,强调植入物的成功率。
1 ,瓦拉拉克大学,塔萨拉区222,塔萨拉区,泰国,泰国,泰国80160,泰国2个微系统化学分析(MINOS)纳米技术(MINOS) mubdiulislam.rizu@urv.cat 3科学技术学院的创意创新,科学技术学院,Nakhon Si Thammarat Rajabhat University,Nakhon Si Thammarat 80280,泰国; fahmida_tina@nstru.ac.th 4 4机械和电气工程学院,吉林电子技术大学,吉林541004,中国; zhaoling_huang@guet.edu.cn 5电气和计算机工程学院,德累斯顿,德累斯顿,德累斯顿,德累斯顿; anindya.nag@tu-dresden.de 6触觉互联网中心与人类融合(CETI),TechnischeUniversitätDresden,01069德累斯顿,德国7号,德国7号民用和机械工程学院,珀斯,珀斯,珀斯,华盛顿州6102,澳大利亚,澳大利亚,珀斯; nasrin.afsarimanesh@curtin.edu.au *通信:mdeshrat.al@mail.wu.ac.th或fealahi@gmail.com,瓦拉拉克大学,塔萨拉区222,塔萨拉区,泰国,泰国,泰国80160,泰国2个微系统化学分析(MINOS)纳米技术(MINOS) mubdiulislam.rizu@urv.cat 3科学技术学院的创意创新,科学技术学院,Nakhon Si Thammarat Rajabhat University,Nakhon Si Thammarat 80280,泰国; fahmida_tina@nstru.ac.th 4 4机械和电气工程学院,吉林电子技术大学,吉林541004,中国; zhaoling_huang@guet.edu.cn 5电气和计算机工程学院,德累斯顿,德累斯顿,德累斯顿,德累斯顿; anindya.nag@tu-dresden.de 6触觉互联网中心与人类融合(CETI),TechnischeUniversitätDresden,01069德累斯顿,德国7号,德国7号民用和机械工程学院,珀斯,珀斯,珀斯,华盛顿州6102,澳大利亚,澳大利亚,珀斯; nasrin.afsarimanesh@curtin.edu.au *通信:mdeshrat.al@mail.wu.ac.th或fealahi@gmail.com,瓦拉拉克大学,塔萨拉区222,塔萨拉区,泰国,泰国,泰国80160,泰国2个微系统化学分析(MINOS)纳米技术(MINOS) mubdiulislam.rizu@urv.cat 3科学技术学院的创意创新,科学技术学院,Nakhon Si Thammarat Rajabhat University,Nakhon Si Thammarat 80280,泰国; fahmida_tina@nstru.ac.th 4 4机械和电气工程学院,吉林电子技术大学,吉林541004,中国; zhaoling_huang@guet.edu.cn 5电气和计算机工程学院,德累斯顿,德累斯顿,德累斯顿,德累斯顿; anindya.nag@tu-dresden.de 6触觉互联网中心与人类融合(CETI),TechnischeUniversitätDresden,01069德累斯顿,德国7号,德国7号民用和机械工程学院,珀斯,珀斯,珀斯,华盛顿州6102,澳大利亚,澳大利亚,珀斯; nasrin.afsarimanesh@curtin.edu.au *通信:mdeshrat.al@mail.wu.ac.th或fealahi@gmail.com,瓦拉拉克大学,塔萨拉区222,塔萨拉区,泰国,泰国,泰国80160,泰国2个微系统化学分析(MINOS)纳米技术(MINOS) mubdiulislam.rizu@urv.cat 3科学技术学院的创意创新,科学技术学院,Nakhon Si Thammarat Rajabhat University,Nakhon Si Thammarat 80280,泰国; fahmida_tina@nstru.ac.th 4 4机械和电气工程学院,吉林电子技术大学,吉林541004,中国; zhaoling_huang@guet.edu.cn 5电气和计算机工程学院,德累斯顿,德累斯顿,德累斯顿,德累斯顿; anindya.nag@tu-dresden.de 6触觉互联网中心与人类融合(CETI),TechnischeUniversitätDresden,01069德累斯顿,德国7号,德国7号民用和机械工程学院,珀斯,珀斯,珀斯,华盛顿州6102,澳大利亚,澳大利亚,珀斯; nasrin.afsarimanesh@curtin.edu.au *通信:mdeshrat.al@mail.wu.ac.th或fealahi@gmail.com
1。超人类主义:社会和哲学运动。(2023)。访问:2023年10月12日:https://www.britannica.com/topic/transhumanism#ref1308463。2。Crowson MG,Lin V,Chen JM,Chan TC:机器学习和人工耳蜗 - 机遇和挑战的结构化审查。耳醇神经醇。 2020,41:e36-45。 10.1097/Mao.00000000002440 3。 Waltzman SB,Kelsall DC:使用人工智能编程人工耳蜗。 耳醇神经醇。 2020,41:452-7。 10.1097/mao.0000000000002566 4。 Wathour J,Govaerts PJ,Lacroix E,NaïmaD:在经验丰富的耳蜗植入患者中使用人工智能的CI编程拟合工具的效果。 耳醇神经醇。 2023,44:209-15。 10.1097/Mao.0000000000003810 5。 张X,Ma Z,Zheng H等。 :脑部计算机界面和人工智能的组合:应用和挑战。 Ann Transl Med。 2020,8:712。 10.21037/atm.2019.11.109耳醇神经醇。2020,41:e36-45。10.1097/Mao.00000000002440 3。Waltzman SB,Kelsall DC:使用人工智能编程人工耳蜗。耳醇神经醇。 2020,41:452-7。 10.1097/mao.0000000000002566 4。 Wathour J,Govaerts PJ,Lacroix E,NaïmaD:在经验丰富的耳蜗植入患者中使用人工智能的CI编程拟合工具的效果。 耳醇神经醇。 2023,44:209-15。 10.1097/Mao.0000000000003810 5。 张X,Ma Z,Zheng H等。 :脑部计算机界面和人工智能的组合:应用和挑战。 Ann Transl Med。 2020,8:712。 10.21037/atm.2019.11.109耳醇神经醇。2020,41:452-7。10.1097/mao.0000000000002566 4。Wathour J,Govaerts PJ,Lacroix E,NaïmaD:在经验丰富的耳蜗植入患者中使用人工智能的CI编程拟合工具的效果。耳醇神经醇。 2023,44:209-15。 10.1097/Mao.0000000000003810 5。 张X,Ma Z,Zheng H等。 :脑部计算机界面和人工智能的组合:应用和挑战。 Ann Transl Med。 2020,8:712。 10.21037/atm.2019.11.109耳醇神经醇。2023,44:209-15。10.1097/Mao.0000000000003810 5。张X,Ma Z,Zheng H等。 :脑部计算机界面和人工智能的组合:应用和挑战。 Ann Transl Med。 2020,8:712。 10.21037/atm.2019.11.109张X,Ma Z,Zheng H等。:脑部计算机界面和人工智能的组合:应用和挑战。Ann Transl Med。 2020,8:712。 10.21037/atm.2019.11.109Ann Transl Med。2020,8:712。10.21037/atm.2019.11.109
2.3。目前,BCHIS和可穿戴的BCD已针对SSD儿童提供补贴。两种治疗方法都可能在功能增益,听力 - QOL和患者满意度方面提供改善,但是,BCHIS和可穿戴的BCD不会恢复双耳听力,并且在聋哑耳朵中长期缺乏刺激可能会影响大脑发育。2.4。CI系统分别由位于皮肤下和人工耳蜗内的耳朵和内部成分(接收器,电极)后面的外部组件(声音处理器,发射器)组成。声音被捕获,并由声音处理器转换为数字信号,并通过发射器发送到接收器。接收器将数字信号转换为电能以刺激耳蜗神经。然后大脑将刺激解释为声音。由于其作用机理,CI系统是在有耳蜗神经缺乏症的患者中禁忌的。假设CI可以直接刺激非听力耳朵来恢复双耳听力。CI可能会从四年以下儿童中逆转异常皮质组织,因为年轻时的神经可塑性更高。在长期听力剥夺或耳蜗神经缺乏症患者中,BCHI或可穿戴的BCD是首选。技术的总体好处
版权所有©2014年,科罗拉多大学的摄政员代表其员工:Daniel D Matlock MD MPH;丹尼·维吉尔(Danny Vigil);艾米·詹金斯MS;卡伦·梅利斯(Karen Mellis); Paul Varosy MD;弗雷德·马苏迪(Fred Masoudi)医学博士,MSPH; Angela Brega博士;大卫·马吉德(David Magid)医学博士,美国国立衰老研究所(K23AG040696)和以患者为中心的结果研究所(PI000116-01)的MPH资助。利益冲突:所有开发人员 - 无。上次更新08/13/2024。保留一些权利。未经出版商的明确书面许可,本出版物的任何商业开发或努力都不得使用。 未经出版商的许可并提供其确认的任何衍生作品,本出版物的任何部分都不得使用。 科罗拉多大学违反了与本文提供的信息的使用或采用相关的所有责任。 用户应对依赖此信息造成的任何损害负责。 内容仅是作者的责任,不一定代表资金机构(NIH,PCORI)或医疗中心的官方观点。 此信息图上提供的材料仅用于信息目的,并且不作为医疗建议提供。 任何人都应在确定ICD是否适合他或她的情况下咨询自己的医生。 这项工作是根据创意共享归因,非商业,无衍生物4.0国际许可证获得许可的。未经出版商的明确书面许可,本出版物的任何商业开发或努力都不得使用。未经出版商的许可并提供其确认的任何衍生作品,本出版物的任何部分都不得使用。科罗拉多大学违反了与本文提供的信息的使用或采用相关的所有责任。用户应对依赖此信息造成的任何损害负责。内容仅是作者的责任,不一定代表资金机构(NIH,PCORI)或医疗中心的官方观点。此信息图上提供的材料仅用于信息目的,并且不作为医疗建议提供。任何人都应在确定ICD是否适合他或她的情况下咨询自己的医生。这项工作是根据创意共享归因,非商业,无衍生物4.0国际许可证获得许可的。
1个国家实验室阿斯塔纳,纳扎尔巴耶夫大学,阿斯塔纳010000,哈萨克斯坦; madina.zhalbinova@nu.edu.kz(M.R.Z.); saule.rakhimova@nu.edu.kz(S.E.R.); ulan.kozhamkulov@nu.edu.kz(U.A.K.); ulykbek.kairov@nu.edu.kz(U.Y.K。)2普通生物学和基因组学系,L。N。Gumilyov Eurasian国立大学,阿斯塔纳010000,哈萨克斯坦3医学系,塞米迪医科大学,Pavlodar Branch,Pavlodar 140000,哈萨克斯坦; gulbanu.akilzhanova@smu.edu.kz(G.A.A.); kenes.akilzhanov@smu.edu.kz(k.r.a.)4共和国诊断中心,CF“大学医学中心”,阿斯塔纳010000,哈萨克斯坦; assel.chinybayeva@umc.org.kz 5塞米医科大学,Semey 071400,哈萨克斯坦; nurlan.shaimardanov@smu.edu.kz(N.K.S.); anargul.kuanysheva@smu.edu.kz(A.G.K.)6塞尔吉耶夫斯基中心,陶布研究所,哥伦比亚大学医学中心,纽约,纽约,纽约10032; jhl2@cumc.columbia.edu 7国家研究心脏外科中心,阿斯塔纳010000,哈萨克斯坦; Makhabbat.bekbossynova@umc.org.kz 8 Nagasaki University,Nagasaki 852-8523,日本 *通信:akilzhanova@nu.edu.kz;电话。 : +7-7172-7065016塞尔吉耶夫斯基中心,陶布研究所,哥伦比亚大学医学中心,纽约,纽约,纽约10032; jhl2@cumc.columbia.edu 7国家研究心脏外科中心,阿斯塔纳010000,哈萨克斯坦; Makhabbat.bekbossynova@umc.org.kz 8 Nagasaki University,Nagasaki 852-8523,日本 *通信:akilzhanova@nu.edu.kz;电话。: +7-7172-706501
重建和再生骨科手术引起了人们对制造用于植入的人造身体部位的浓厚兴趣。医学的进步和发展提高了生物材料在受损身体部位修复中的应用。在不同类型的生物材料中,生物陶瓷在假肢(一种用于替代生物部位的人造机械装置)中越来越受欢迎。生物陶瓷对人类和其他哺乳动物具有生物相容性,因此可用于修复任何未固定的部位。由于生物陶瓷与宿主组织非常相似,因此它可以促进生物体的再生反应(Dorozhkin 2010)。值得注意的是,生物陶瓷有助于最大限度地减少对金属表面的暴露,从而通过减少潜在致敏离子的来源增强用户的假肢体验(Piconi 和 Maccauro 2015)。在骨科手术中,全膝关节置换术 (TKA) 和全髋关节置换术 (THA) 的手术速度超过其他所有手术,因此成本高昂且结果持久性差 (Schwartz 等人,2020 年)。生物陶瓷植入物具有优异的生物相容性、承受更大扭矩的能力、承载能力、低密度和高耐腐蚀/耐磨性,因此在 THA/TKA 手术中对其的需求日益增加。虽然 THA 需要更换上股骨(大腿骨)并重新铺面/更换匹配的骨盆(髋骨),但 TKA 是指更换下股骨、胫骨和髌骨的患病软骨表面 (Joseph,2003 年)。由于反应性较低、早期稳定和功能寿命较长,生物陶瓷植入物显示出复制原始骨骼机械行为的潜力(Shekhawat 等人,2021 年)。从实际情况来看,陶瓷植入物的有限寿命也可能需要对全膝关节置换/全髋关节置换患者(rTKA/rTHA)进行翻修手术。此外,任何意外的机械不匹配或陶瓷碎片感染都可能导致膝关节和髋关节植入物过早失效(Shekhawat 等人,2021 年)。埃默里大学骨科外科系的一份报告
关键溢价:需要更高程度的个性化,高美学或高贵金合金的氧化氢的解决方案。高级:需要更高个性化程度的案例的技术先进解决方案。标准:具有直接情况的标准组件和技术的具有成本效益的解决方案。
摘要本文着重于医学物联网智能植入物中重要且及时的数据安全问题。随着医疗保健事物互联网的扩散,出现了新的机遇和挑战。嵌入人体中的智能植入物监测和治疗各种医疗状况的越来越普遍,但它们还需要增强信息安全措施。本文分析了与智能植入物相关的威胁,这些威胁可能会影响患者医疗数据的机密性和完整性。诸如未经授权访问植入物,数据传输的拦截和更改以及对植入物硬件攻击的可能性之类的方面。非常关注轻质加密及其在医疗植入物领域的应用。现代的加密和身份验证方法可以在确保物联网智能植入物中的数据安全方面发挥关键作用。本文探讨了应用不仅有效而且具有较低计算要求的密码算法的可能性,这对于资源有限的嵌入式系统尤为重要。此外,本文讨论了在医疗植入物中实施轻质密码学的实施,并为Smart植入物的开发人员和制造商提供了实用的建议,以实施加密解决方案以确保信息安全。关键字1智能植入物,信息安全,密码学,机密性,完整性,可用性,安全威胁,轻质加密图,医疗数据,身份验证,网络安全,健康监控,数字签名,哈希功能,加密功能,加密密钥管理,冗余Hashing