专业 /机构原始生效日期:2006年10月1日最新审查日期:2024年5月28日,当前生效日期:2020年4月8日,州和联邦授权和健康计划成员合同,包括特定的规定 /排除措施,优先于医疗政策,必须首先被视为确定承保资格的资格。要验证会员的福利,请联系堪萨斯州客户服务的Blue Cross和Blue Shield。本文包含的BCBSKS医疗政策是为了信息目的,仅适用于通过BCBSK拥有健康保险或由BCBSK管理的自保组计划所涵盖的成员。FEP成员的医疗政策受FEP医疗政策的约束,这可能与BCBSK医疗政策不同。医疗政策不构成医疗建议或医疗服务。治疗医疗保健提供者是独立承包商,既不是堪萨斯州的蓝十字和蓝盾的雇员,也不是诊断,治疗和医疗建议。如果您的患者在不同的蓝色十字和蓝盾计划中涵盖,请参考该计划的医疗政策。
值是 n (%) 或中位数(第一四分位数-第三四分位数)。ACS,急性冠状动脉综合征;ARC;学术研究联盟,CABG;冠状动脉搭桥手术,CCS;慢性冠状动脉综合征,HBR;高出血风险,H2 阻滞剂;组胺 2 型受体拮抗剂,eGFR;估计肾小球滤过率,MI;心肌梗死,NSTEMI;非 ST 段抬高型心肌梗死,PCI;经皮冠状动脉介入治疗,P-CAB;钾竞争性酸阻滞剂,PPI;质子泵抑制剂,STEMI;ST 段抬高型心肌梗死
摘要 — 可植入脑机接口 (BMI) 在运动康复和移动性增强方面大有可为,它们需要准确且节能的算法。在本文中,我们提出了一种用于可植入 BMI 的回归任务的新型脉冲神经网络 (SNN) 解码器。SNN 通过增强的时空反向传播进行训练,以充分利用其处理时间问题的能力。所提出的 SNN 解码器在离线手指速度解码任务中的表现优于最先进的卡尔曼滤波器和人工神经网络 (ANN) 解码器。解码器部署在基于 RISC-V 的硬件平台上,并经过优化以利用稀疏性。所提出的实现在占空比模式下的平均功耗为 0.50mW。在进行无占空比的连续推理时,它实现了每次推理 1.88 µ J 的能效,比基线 ANN 低 5.5 倍。此外,每次推理的平均解码延迟为 0.12 毫秒,比 ANN 实现快 5.7 倍。
感觉性听力障碍(SNHI)是儿童的领先感官缺陷,影响了每1000名活出生的大约1.9个[1],每100名年龄的儿童又有1个较晚的SNHI [2]。遗传因素造成了超过50%的SNHI病例,迄今为止有200多个基因[3]。对于患有轻度或中度SNHI的儿童,助听器配件是主要的相互作用。但是,如果SNHI深刻,人工耳蜗变得强制性。基因组医学的进步,尤其是下一代测序(NGS),已经显着促进了遗传检查对临床实践的全面。ngs的基因组测序已逐渐取代了传统的基因检测,并已成为小儿SNHI的主要诊断工具[4-7]。与成像和Vi-Rogogation研究结合使用,NGS允许在大约80%的小儿耳蜗(CI)Canti-
摘要:这项研究调查了上升主动脉置换的第一个模型的六个月结果。用于生产生物管的模具皮下植入了山羊。2-3个月后,寄生了模具以获得生物管(内径,12毫米;壁厚,1.5 mm)。接下来,我们在五只同种异体山羊中使用生物管进行了升高主动脉替代。在6个月时,动物进行了计算机断层扫描(CT)和组织学评估。作为比较,我们使用戊二醛固定自体心包卷或猪衍生的异质生物管进行了类似的手术。在6个月时,CT显示生物管或假疗法形成没有动脉肿瘤。组织学评估显示内皮细胞,平滑肌细胞和沿生物管的弹性纤维的发展。在自体心包组中,没有新的细胞发育的证据,但是有钙化。在异源生物管组中观察到的组织学变化与同种异体生物管组中的组织学变化相似。但是,某些异源生物管中存在炎症细胞浸润。基于上述内容,我们可以成功创建世界上第一个基于生物管的升主替代模型。目前的结果表明,生物管可能是主动脉组织再生的支架。
描述植入循环记录器(ILR),也称为可插入或可植入的心脏监护仪(ICM),是用于检测心律不齐的皮下监测装置。它植入左胸腔区域,是MRI条件。根据编程标准自动激活或由患者触发时,设备将存储事件。根据制造商和特定设备,ILR的电池寿命范围可以在两到四年之间。7几个ILR已获得美国食品药品监督管理局(FDA)的批准(例如,揭示linq,Releve XT,Conrfirm RX™和BioMonitor)。2本政策涉及ILR/ICM的医疗必要性标准。本政策提供了可植入的环路记录器(ILR)/可植入心脏监护仪(ICM)的医疗必需指南。用于30天的外部门诊监测,PA Health&Wellness使用准间标准来审查这些服务。政策/标准I.是PA Health&Wealtness(PHW)®的政策,可植入的环记录器(ILR)/可植入的心脏监护仪(ICM)在以下任何指示上都是医学上必不可少的:A。在30天的外科手术监测尚无定论或禁忌症时,怀疑是在隐藏式中风的情况下静音的房颤(AF); B.心律不齐的高风险(例如,家族史,症状,结构性心脏病解剖学); 2。30天的外科卧床监测(例如,外部循环记录器)尚无定论或禁忌; D.经常性,无法解释的晕厥或前同步以及以下两个:30天的外科医学监测尚无定论或禁忌症时,可疑或已知的心室心律不齐; C.结构或浸润性心脏病的史(例如瓣膜主动脉狭窄,肥厚性心肌病,心脏结节病,先天性心脏病),两种都:1。
没有指示手术。正确选择符合特定标准的患者(基于从随机对照试验中的史学结果),他们努力地遵守植入物的使用情况并预先实施神经肌肉康复,改善功能恢复显着的成功成功,以及减少止痛药物。接受植入多卵形神经刺激的伤害性机械CLBP患者已受到医生和康复专家的治疗,他们磨练了从事多纤维神经刺激的经验。他们已经合作制定了共识和证据驱动的指南,以提高质量外,并在遇到此设备患者时协助提供者。医师和物理治疗师一起提供精确的以患者为中心的医疗管理,并具有优质的神经肌肉康复,以鼓励患者成为其植入物的专家和优质的脊柱运动,以帮助覆盖长期以来与CLBP相关的长期多发性功能障碍。©2024作者。由Elsevier Inc.代表美国康复医学大会出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
1.1. 纳米技术 纳米技术是指在非常小的分子尺度上对物质进行工程设计。纳米技术尤其关注“小于 100 纳米的尺寸和公差”以及“对单个原子和分子的操纵”。纳米技术是多个科学领域合作的成果,它有可能彻底改变骨科手术的诊断和治疗。纳米技术在骨科植入物中的应用已被证明非常有利,可以增强对各种骨骼异常和骨科损伤的管理。人们已经研究和使用了多种材料,从而可以使用多种可能的材料,每种材料都有其独特的品质和优势。这些材料包括多糖(如琼脂糖)、明胶、生物活性陶瓷和可生物降解的聚合物。这些纳米材料的物理特性和纳米级品质使它们能够支持组织再生和细胞增殖,从而使它们能够在人体内有效发挥作用。此外,由纳米粒子制成的植入物具有更大的表面积,从而降低了感染率并为骨形成创造了有利的环境 [1, 2]。纳米技术带来了不同的表面改变和药物输送,下文将对此进行介绍。
抽象的双边人工耳蜗植入物(BICIS)带来了几种好处,包括改善噪声和声源定位中语音理解。但是,受益者之间的有益双侧植入物在不同的个人之间有很大差异。在这里,我们考虑了这种变异性的原因之一:两只耳朵之间的听力功能差异,即室内不对称。到目前为止,在各个研究领域中对室内不对称性的研究已经高度专业。本综述的目的是将这些研究纳入一个地方,激发未来在室内不对称领域的研究。我们首先考虑自下而上的处理,其中双耳提示是使用左耳和右耳信号的激发抑制信号来表示的,随着声音在太空中的位置而变化,并由听觉脑干中的横向上橄榄表示。然后,我们考虑通过预测编码进行自上而下的处理,该编码假设感知源于基于上下文和先前的感官体验的期望,以级联的皮质回路表示。根据传入的感觉输入,维护和更新了内部感知模型。一起,我们希望这种对生理,行为和建模研究的融合将有助于弥合双耳听力领域的差距,并更清楚地理解对室内不对称的对未来对最佳患者干预措施的研究的影响。
引言组织工程是一门多学科科学,其目的是创建可以恢复,维护和改善受损组织功能的生物替代物。1组织工程的主要组成部分是支架,细胞和生长因子。2一个组织具有许多结构和机械性能来发挥其功能。为了在组织工程中获得这些条件,将细胞培养在人工结构中。这些结构能够模仿和支持三维织物结构的结构。此结构称为脚手架,在体内和ex vivo中都使用。无论哪种情况,脚手架都是模仿体内活组织的模仿,使植入的细胞能够影响周围的微环境。3使用生物相容性和可降解材料获得生物支架。4尽可能地,这些支架的结构应与种植区域的质地一样相似。以这种方式,受损组织的重建和改进将增加质量和数量。除了高机械强度外,脚手架结构还必须具有