多年来,金属,聚合物和陶瓷已经在各种医疗植入物中找到了应用。金属被广泛用于承载植入物中,范围从板,骨折固定的螺钉到臀部,膝盖,肩膀,脚踝等的关节假体。最常用的金属是316升不锈钢,钴铬合金,钛合金和镁合金[3,4]。聚合物已用于面部假体,肾脏和肝脏部位,心脏成分,假牙和髋关节,膝关节,例如,超高分子量聚乙烯(UHMWPE)载荷装置[4]阀[5]。陶瓷用于替换或修复硬结核组织,例如高强度,韧性和表面饰面,例如骨骼和牙齿[6]。
先天性心脏病(CHD)是新生儿中最常见的先天性疾病之一[1]。在美国,每1000名新生儿有8-10名冠心病[2]。尽管有冠心病的人数增加,但每年有18万名新生儿和婴儿死于先天性心脏病[3]。这些死亡中的大多数是由先天性瓣膜疾病引起的,该疾病占所有CHD诊断的25%[4,5]。手术干预通常是在生命的第一年,用于先天性瓣膜疾病患者的生存[6]。目前对婴儿和不可修复的瓣膜疾病的新生儿的护理标准是心脏瓣膜的替代[4]。这可以使用各种技术来完成,包括机械阀,生物假体瓣膜,冷冻保存的同种异体移植物和脱细胞同种异体移植物。但是,这些方法中的每一种都有显着的缺点,尤其是在儿科患者中[7]。机械瓣是血小子造成的,因此需要终身抗凝治疗,使患者的出血和血栓栓塞事件的风险增加[8,9]。生物假体阀容易发生结构瓣变性。这对于小儿人群特别危险,他们对早期结构阀变性的风险更高,因此,早期重新手术以替代受损阀门[10]。冷冻保存的同种异体移植物成为免疫原性。研究表明,这种免疫反应在婴儿和重新干预时间下降的儿童中比成人更强烈[11]。当前阀门更换选项最重要的缺点是植入物无法适应受体的体细胞生长。当前可用的替换策略具有固定的功能直径,并最终导致了获得的患者验证不匹配[12]。这需要小儿患者进行多次侵入性重新操作,以将较小的阀门换成较大的阀门。2岁以下的患者
Warwick 等人解决了一个主要问题,即植入物可能引起感染 [4]。密切监测伤口周围的组织,尤其是经皮部位的组织,以防出现白华。为了降低感染的可能性,植入物阵列上的 100 个电极中只有 20 个进行了连接,从而减少了从手臂出来的线束的直径。研究期结束后,没有感染的迹象,也没有在移除时出现身体排斥植入物的迹象。相反,在植入部位周围看到纤维疤痕组织生长,将其固定在原位。当所有 20 个电极和 2 个参考线在植入期间完全发挥作用时,可以看出阵列的稳健性,而由于电极的不连续性和无功能性,在研究结束时只有 3 个电极保持功能。• Erich Talamoni Fonoff 等人对 57 名患有运动障碍的患者进行了研究,他们接受了双侧
摘要:近年来,神经科学研究和相关成果的不断进展以及制造工艺的进步增加了对神经接口系统的需求。脑机接口 (BMI) 已被证明是一种很有前途的诊断和治疗神经系统疾病以及恢复感觉和运动功能的方法。神经记录植入物作为 BMI 的一部分,能够捕获脑信号,并通过发射器将其放大、数字化并传输到体外。设计此类植入物的主要挑战是最大限度地降低功耗和硅片面积。本文对多通道神经记录植入物进行了调查。在介绍各种神经信号特征后,我们研究了主要的可用神经记录电路和系统架构。探索了可用架构的基本模块,例如神经放大器、模数转换器 (ADC) 和压缩块。我们介绍了神经放大器的各种拓扑结构,进行了比较,并探讨了它们的设计挑战。为了在神经放大器的输出端实现相对较高的 SNR,我们讨论了降噪技术。此外,为了将神经信号传输到体外,需要使用数据转换器对其进行数字化,然后在大多数情况下,会应用数据压缩来降低功耗。我们介绍了各种专用 ADC 结构,并概述了主要的数据压缩方法。
抽象背景/目的:视野研究对于理解细胞的重音至关重要,但是传统培养系统经常忽略实际植入物的三维(3D)结构,从而导致细胞募集和行为的限制,在很大程度上受重力控制。这项研究的目的是先驱一个新型的3D动态成骨细胞培养系统,用于以更临床和物理学相关的方式评估牙科植入物的生物学能力。材料和方法:在带有垂直定位的牙齿植入物的24孔盘中培养大鼠骨髓衍生的成骨细胞。使用3D旋转器进行控制的旋转,并应用了3个倾斜度。 细胞的附着,增殖和植入物表面上的分化是响应不同表面地形,物理化学特性和局部环境的响应。 结果:在经过测试的旋转速度(0、10、30、50 rpm)中,在30 rpm处观察到最佳成骨细胞附着和增殖。 在30 rpm的旋转速度和旋转速度之间发现线性相关性,在50 rpm下下降。 碱性磷酸酶(ALP)活性和矿化基质形成在新近酸蚀刻的亲水性表面上升高,与它们4周龄的疏水表面相比。 砂植入物显示出较高的ALP活性和基质矿化。 将N-乙酰半胱氨酸添加到培养基中增加了ALP活性和矿化。 结论:在优化的动态条件下,在体外成功附着,增殖和矿物质成骨细胞成功地附着,增殖和矿化。使用3D旋转器进行控制的旋转,并应用了3个倾斜度。细胞的附着,增殖和植入物表面上的分化是响应不同表面地形,物理化学特性和局部环境的响应。结果:在经过测试的旋转速度(0、10、30、50 rpm)中,在30 rpm处观察到最佳成骨细胞附着和增殖。在30 rpm的旋转速度和旋转速度之间发现线性相关性,在50 rpm下下降。碱性磷酸酶(ALP)活性和矿化基质形成在新近酸蚀刻的亲水性表面上升高,与它们4周龄的疏水表面相比。砂植入物显示出较高的ALP活性和基质矿化。将N-乙酰半胱氨酸添加到培养基中增加了ALP活性和矿化。结论:在优化的动态条件下,在体外成功附着,增殖和矿物质成骨细胞成功地附着,增殖和矿化。该系统区分了具有不同表面地形,润湿性和生化调制环境的植入物的生物学能力。这些发现支持开发3D动态牙齿植入物
摘要。植入物领域正在通过生物活性涂层重新定义,这些涂料已成为医疗植入物中的开创性区域。这些独特的涂层包含生物活性分子,具有与相邻生物周围环境相互作用,促进骨整合,提供抗菌质量并为整体植入物功能贡献的特殊能力。本摘要探讨了生物活性涂层中的最新改进和设计,重点是它们在增强医疗植入物的功能和耐用性方面的重要作用。主要目标之一是整合诸如羟基磷灰石和生物活性玻璃等尖端材料,这些材料鼓励植入物整合并产生生物活性离子以进行治疗作用。通过修改这些涂层的表面粗糙度和孔隙度可以准确控制组织的细胞粘附和再生。此外,通过抗生素和银纳米粒子等抗菌药物(例如,感染的风险(这是植入手术中的普遍关注点))也可以最小化。为了实现涂料沉积中的一致性和寿命,这项研究还研究了最新技术,包括等离子体喷涂和静电纺丝。关键字:生物活性,涂料,植入物,骨整合,生物材料
智能植入物越来越多地用于治疗各种疾病,跟踪患者状态并恢复组织和器官功能。这些设备支持内部器官,主动刺激神经并监测基本功能。通过连续监测或刺激,可以改善患者观察质量和随后的治疗方法。另外,使用可生物降解和完全排泄的植入物材料消除了手术清除的需求,提供了患者友好的解决方案。在这篇评论中,我们对智能植入物进行了分类,并讨论了创建中使用的最新原型,材料和技术。我们的重点在于探索医疗设备,而不是替换器官或组织并通过传感器和电子电路结合新功能。我们还研究了创建保留所有关键功能的可植入设备的优势,机遇和挑战。通过深入概述当前最新的智能植入物,我们阐明了持续的问题和局限性,同时讨论了这些设备所使用的材料未来进步的潜在途径。
骨与种植体接触 (BIC) 是骨整合和牙种植体初期稳定性中最重要的问题之一。种植体周围骨的组织学已被广泛报道。然而,仍然缺乏关于增强骨生物力学、组织学和长期稳定性的信息。增强骨中种植体表面的特性及其对 BIC 和种植体稳定性的影响,以及种植体宏观和微观结构对增强骨中初期稳定性的贡献尚未完全了解。我很高兴邀请您向本期“骨与牙种植体”特刊提交手稿。感兴趣的主题包括但不限于:- 骨与种植体接触和骨体积;- 增强骨生物力学特性和
摘要 不锈钢、钛合金、钴铬合金等金属材料是应用最为广泛的骨科植入物,但在临床应用中仍存在金属与骨的力学不匹配、炎症、二次手术等问题。镁及其合金作为新一代医用金属材料,由于其优异的生物降解性而备受关注。可生物降解的镁基金属具有良好的力学性能和成骨性能,有望成为治疗棘手骨科疾病的植入材料。但腐蚀速度快仍是制约其临床应用的主要挑战之一,合金化和表面改性是控制镁合金腐蚀速度的有效方法。本文综述了可生物降解镁合金的力学性能、生物性能及其在临床应用中存在的问题,重点介绍了镁基金属在合金化和表面改性方面的最新进展,并介绍了镁基植入物在骨科的应用现状。
重建和再生骨科手术引起了人们对制造用于植入的人造身体部位的浓厚兴趣。医学的进步和发展提高了生物材料在受损身体部位修复中的应用。在不同类型的生物材料中,生物陶瓷在假肢(一种用于替代生物部位的人造机械装置)中越来越受欢迎。生物陶瓷对人类和其他哺乳动物具有生物相容性,因此可用于修复任何未固定的部位。由于生物陶瓷与宿主组织非常相似,因此它可以促进生物体的再生反应(Dorozhkin 2010)。值得注意的是,生物陶瓷有助于最大限度地减少对金属表面的暴露,从而通过减少潜在致敏离子的来源增强用户的假肢体验(Piconi 和 Maccauro 2015)。在骨科手术中,全膝关节置换术 (TKA) 和全髋关节置换术 (THA) 的手术速度超过其他所有手术,因此成本高昂且结果持久性差 (Schwartz 等人,2020 年)。生物陶瓷植入物具有优异的生物相容性、承受更大扭矩的能力、承载能力、低密度和高耐腐蚀/耐磨性,因此在 THA/TKA 手术中对其的需求日益增加。虽然 THA 需要更换上股骨(大腿骨)并重新铺面/更换匹配的骨盆(髋骨),但 TKA 是指更换下股骨、胫骨和髌骨的患病软骨表面 (Joseph,2003 年)。由于反应性较低、早期稳定和功能寿命较长,生物陶瓷植入物显示出复制原始骨骼机械行为的潜力(Shekhawat 等人,2021 年)。从实际情况来看,陶瓷植入物的有限寿命也可能需要对全膝关节置换/全髋关节置换患者(rTKA/rTHA)进行翻修手术。此外,任何意外的机械不匹配或陶瓷碎片感染都可能导致膝关节和髋关节植入物过早失效(Shekhawat 等人,2021 年)。埃默里大学骨科外科系的一份报告
