当得知我获得海伦·牛顿-特纳奖章时,我开始研究该奖项的历史,包括海伦·牛顿-特纳的职业生涯,以及往届获奖者的成就。往届获奖者的成就给我留下了深刻的印象,同时,看到自己的名字被列入获奖者名单,我感到十分谦卑和荣幸。我可能是第一个从未见过海伦·牛顿-特纳博士的获奖者,25 年前,我来到澳大利亚,那时她去世一年。关于海伦·牛顿-特纳的文章很多(见 Allen 1992;Moyal 1994),她在建筑专业毕业后,在悉尼大学校园内的 CSIR(现为 CSIRO)麦克马斯特实验室担任秘书。她的老板是著名的 CSIRO 负责人兼科学家 Ian Clunies Ross 爵士,他认识到她在数学和统计学方面的天赋,并鼓励她学习。 1938 年,他安排她在英国待一年,在伦敦大学学院与罗纳德·费希尔爵士和罗瑟姆斯特德的弗兰克·耶茨一起接受统计学在农业中的应用进一步培训。返回澳大利亚后,她在美国待了 10 周,参观了绵羊研究实验室。在她随后的职业生涯中,她在将数量遗传学引入澳大利亚绵羊育种方面发挥了重要作用。当阅读与她共事的前奖章获得者的评论时,明显发现她鼓舞人心且影响力巨大。她强烈的信息是“按数字育种”。阅读这些过去的演讲可以让人意识到科学家与“行业”合作得多么好,个体育种者在推动进步方面发挥了非常重要的作用。
信号................................................................................................................ 107
抽象的RNA疫苗被先天免疫系统感知为非自我分子,并且平衡控制免疫激活和疫苗安全性和功效的控制仍然是一个挑战,尤其是对于自我扩增的RNA(SARNAS)而言。掺入修饰的核苷酸已被广泛用于温度RNA疫苗的免疫激活。然而,以前据报道,将修饰的核苷酸掺入sARNAS阻碍抗原表达的情况下。在这里,我们使用了委内瑞拉马脑炎病毒(VEEV)的衰减TC-83菌株的报道器复制子研究改良核苷酸掺入对转染细胞中SarnA复制能力的影响。与未修饰的SARNA相比,ψ和M 1ψ分子在RNA合成中显示出深刻的缺陷。 有趣的是,M 5 C修饰的RNA的RNA合成水平与未修饰的分子相似,将M 5 C定位为Sarna修饰的有前途的候选者。 为了克服RNA合成中ψ或M 1ψ的核苷酸掺入的影响,我们探索了两种替代方法:工程UTR序列和调谐聚合酶保真度。 我们的结果揭示了聚合酶保真度和SARNA扩增之间的先前未欣赏的联系。 总体而言,我们为具有高水平异源蛋白表达和潜在疫苗应用的SARNA设计提供了新的见解。 然而,与其他疫苗平台相比,MRNA疫苗技术面临RNA不稳定性,有效激活RNA转化的先天免疫反应,而限制RNA转换的先天免疫反应通常会导致副作用率更高。ψ和M 1ψ分子在RNA合成中显示出深刻的缺陷。有趣的是,M 5 C修饰的RNA的RNA合成水平与未修饰的分子相似,将M 5 C定位为Sarna修饰的有前途的候选者。为了克服RNA合成中ψ或M 1ψ的核苷酸掺入的影响,我们探索了两种替代方法:工程UTR序列和调谐聚合酶保真度。我们的结果揭示了聚合酶保真度和SARNA扩增之间的先前未欣赏的联系。总体而言,我们为具有高水平异源蛋白表达和潜在疫苗应用的SARNA设计提供了新的见解。然而,与其他疫苗平台相比,MRNA疫苗技术面临RNA不稳定性,有效激活RNA转化的先天免疫反应,而限制RNA转换的先天免疫反应通常会导致副作用率更高。基于RNA分子的引入疫苗和免疫疗法依赖于RNA作为信使(mRNA)的生物学作用,用于宿主细胞的蛋白质翻译,以实现天然有效载荷表达,包括翻译后修饰,多媒体蛋白质复合物的组装以及适当的运输到亚细胞位置。通过体外转录,与其他基于载体的平台和灭活病毒疫苗相比,通过体外转录的快速开发和简单的生产过程,以及可靠的有效性是基于RNA的疫苗开发平台的主要优势[1-3]。不同的策略旨在通过控制免疫激活或改善翻译来增加RNA分子递送后抗原表达的产率[1]。首先,在RNA合成模拟内源性mRNA分子后,在体外转录或酶上掺入1型或2个帽,限制了内在的免疫反应。第二,可以优化5'和3'未翻译区域(UTR),以提高转化效率和控制免疫反应。Third, incorporation of modified nucleotide analogues including 5-methylcytidine (m 5 C), N6-methyladenosine (m 6 A), 5-methyluridine (m 5 U), 2-thiouridine (s 2 U) or pseudouridine ( ψ ) is a commonly used strategy aimed at reducing the activation of the immune response in transfected cells [4].此外,ψ和N1-甲基丙啶(M1ψ)增加了修饰mRNA的平移能力[5]。也将采用不同的策略,例如编码感兴趣蛋白质或增加poly(a)尾巴长度的开放阅读框架(ORF)的密码子优化,也被用不同的结果应用。最后,基于自我扩增的RNA(SARNA)的疫苗设计提供了降低剂量需求的手段,这是由于SARNA在细胞细胞质中复制的能力,