摘要背景:生物疗法彻底改变了对2型炎症对严重哮喘的治疗。尽管这种治疗方法在减少加重和口服类固醇的剂量方面非常有效,但对接受生物制剂治疗的严重哮喘患者的症状持续性知之甚少。目的:我们旨在描述用生物制剂治疗的严重哮喘患者的哮喘控制和医疗消费。设计:第二个蛋奶酥研究是一项由严重哮喘的临床研究计划认可的真实前瞻性观察性研究:创新与科学网络的杠杆。方法:研究了至少12个月的严重哮喘诊断为严重诊断的成年人。对患者进行了一份自我管理问卷,包括哮喘控制问卷(ACQ),哮喘生活质量问卷(AQLQ)以及对患者的合规性评估测试。在入学前12个月内的医疗保健消费记录在记录中。在接受生物制剂的患者中,医生表明患者是生物反应者还是无反应者。结果:分析了431例严重哮喘患者的特征。其中,有409例患者(94.9%)出现哮喘,患有2型炎症(T2高)特征,297例(72.6%)患有T2高表型的患者用生物学治疗。医师估计,接受生物制剂的患者中有88.2%是反应者。但是,仅在25.3%的患者中获得哮喘控制(ACQ> 0.75)。GERD和OSA是不受控制的哮喘的独立因素。不根据ACQ评分来控制被确定为生物制剂的响应者的高比例(77.8%)。约有50%的患者每天继续使用口服皮质类固醇(25.2%),或每年至少连续三天(25.6%)每年使用三次以上。胃食管反流疾病(GERD)和阻塞性睡眠呼吸暂停综合征(OSA)被确定为与不受控制的哮喘相关的独立因素。结论:尽管严重的哮喘患者对生物制剂有反应,但只有25.3%的人控制了哮喘。
摘要:在当前的工作中,设计,制造和测试了使用纳米复合材料和合成材料的新人造人类软心和人造心脏瓣膜的开发模型。检查了制造的机械人造心脏瓣膜,以确定每种类型的最佳使用寿命。通过在每个产生的值上使用瞬态重复并连续施加血压来模拟每个脉冲周期中自然心脏中发生的舒张期和收缩压,从而实现了疲劳寿命。获得的结果表明,实施了新一代软性人造心脏的3D打印作为永久替代品的替代品,以替代高成本可用的临时植入物机械心脏,该植入物可能会超过价格和数十万美元的价格,其工作寿命不超过五年。随着阀门运动部位运动的复杂性,使用不同材料和设计的生产人造阀获得的疲劳安全系数降低。在使用单向式扁平,简单运动的阀(如单叶型阀门)时,获得了最高速率,其中所有使用的材料都适合于生产此类阀门。达到了最高的安全系数(15)。使用高度柔韧性和强大的PSN4纳米复合材料来制造二尖瓣三叶叶阀(厚。= 1.0 mm)时,记录了最低速率。使用相同的类型和阀门时,此值降至0.99,但厚度等于0.5 mm。可以在这里注意到,唯一适合于这种人造阀类型的制造的是纳米复合材料聚醚酰亚胺/硅胶橡胶带有纳米二氧化硅(PSN4),而其他使用的材料失败了,因为疲劳因子值小于1。 div>。 div>。 div>。该材料的使用寿命约为9200 x 106周期,相当于大约290年,其次是SIBSTAR 103,默认年龄为209.6 x 106周期或9年。
稳态视觉诱发电位 (SSVEP) 是一种广泛使用的脑机接口 (BCI) 范式,因其多目标能力和有限的脑电图电极要求而受到重视。传统的 SSVEP 方法经常因闪烁的光刺激而导致视觉疲劳和识别准确率下降。为了解决这些问题,我们开发了一种创新的稳态运动视觉诱发电位 (SSMVEP) 范式,该范式融合了运动和颜色刺激,专为增强现实 (AR) 眼镜设计。我们的研究旨在增强 SSMVEP 反应强度并减轻视觉疲劳。实验在受控的实验室条件下进行。使用 EEGNet 的深度学习算法和快速傅里叶变换 (FFT) 分析脑电数据,以计算分类准确率并评估反应强度。实验结果表明,双模态运动-颜色融合范式显著优于单模态SSMVEP范式和单色SSVEP范式,在中等亮度(M)和C=0.6的面积比下,准确率最高可达83.81%±6.52%。客观测量和主观报告均证实了双模态运动-颜色融合范式的信噪比(SNR)有所提高,视觉疲劳有所减轻。研究结果验证了双模态运动-颜色融合范式在基于SSVEP的脑机接口(BCI)中的应用前景,能够同时提升脑部反应强度和用户舒适度。
1分子生命科学系,慕尼黑技术大学,Liesel-Beckmann-STR。2,85354德国弗莱明; i.kakoulidou@tum.de(i.k.); frank@johanneslab.org(F.J.)2森林遗传学和生物技术实验室,地中海森林生态系统研究所,希腊农业组织 - 迪米特拉(Elgo-dimitra),11528年,希腊雅典,希腊; avramidou@fria.gr 3园艺学院,孟德勒姆 - 遗传学,遗传学,孟德尔大学的遗传学,valtická334,69144,捷克共和国莱德尼斯; baranek@mendelu.cz 4 Umr 950 Ecophysiologievégétale,Agronomie et Nutritions N,C,S,Unicaen,Inrae,Inrae,Normandie Université,Cedex,F-14032 Caen,法国; sophie.brunel-muguet@inrae.fr 5植物和农业科学中心,爱尔兰国立大学(NUI)Galway瑞安研究所,爱尔兰H91 TK33 Galway; sara.farrona@nuigalway.ie 6 Lichtenberg Str。2A,85748 Garching,德国7分子,细胞与系统生物学研究所,医学,兽医与生命科学学院,鲍尔大厦,格拉斯哥大学,格拉斯哥大学,格拉斯哥G12 8QQ,英国; eirini.kaiserli@glasgow.ac.uk 8植物科学研究所,农业研究组织,火山中心,里尚·莱齐恩(Rishon Lezion)7505101,以色列; Michall@volcani.agri.gov.il 9佛罗伦萨大学生物学系,意大利Sesto Fiorentino 50019; federico.martinelli@uni.it。10农业学院,诺维·萨德大学 Georgi Bonchev Str。,Bldg。 21,1113 Sofifa,保加利亚; valyavassileva@bio21.bas.bg 13 Laboratoire de Biologie des Ligneux et des Grandes Cultures,Inrae,ea1207 USC1328,Universitéd'Orléans,F-45067Orlléans,F-45067Orléans,法国电话。2A,85748 Garching,德国7分子,细胞与系统生物学研究所,医学,兽医与生命科学学院,鲍尔大厦,格拉斯哥大学,格拉斯哥大学,格拉斯哥G12 8QQ,英国; eirini.kaiserli@glasgow.ac.uk 8植物科学研究所,农业研究组织,火山中心,里尚·莱齐恩(Rishon Lezion)7505101,以色列; Michall@volcani.agri.gov.il 9佛罗伦萨大学生物学系,意大利Sesto Fiorentino 50019; federico.martinelli@uni.it。10农业学院,诺维·萨德大学Georgi Bonchev Str。,Bldg。21,1113 Sofifa,保加利亚; valyavassileva@bio21.bas.bg 13 Laboratoire de Biologie des Ligneux et des Grandes Cultures,Inrae,ea1207 USC1328,Universitéd'Orléans,F-45067Orlléans,F-45067Orléans,法国电话。21,1113 Sofifa,保加利亚; valyavassileva@bio21.bas.bg 13 Laboratoire de Biologie des Ligneux et des Grandes Cultures,Inrae,ea1207 USC1328,Universitéd'Orléans,F-45067Orlléans,F-45067Orléans,法国电话。dositeobradaviôca8,11波伦。科学,植物植物学院。: +33-28-41-70-22
对于解决地热井中HPHT条件引起的钻井问题的可能性,需要进行热稳定的地热钻泥系统的发展。这是由于高温对HPHT条件下泥流体的降解影响而发生的。挑战在于设计一种可以承受高压,高温(HPHT)条件的合适钻孔液。本研究旨在提供既便宜又环保的新添加。在应用于HPHT钻井环境时,添加剂有可能匹配或超过现有添加剂的性能。几层石墨烯(FLRGO)是通过根据Hummer方法制备的氧化石墨烯获得的。然后,还用两种类型的纳米颗粒装饰了还原的石墨烯表面,以通过简单的溶液混合技术获取两种不同组合物的纳米复合材料。使用氮化硼(BN)纳米颗粒制备了第一个石墨烯纳米复合材料(RGB),其比率不同,以产生三组从1到3。使用氮化钛(TIN)纳米颗粒获得了第二个(RGBT),其百分比不同,以产生六组从1捐赠至6。The prepared reduced graphene oxide along with its nitrides nanocomposites were intensively investigated using several characterization techniques including scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transfer infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA).因此,0.2、0.6和1 wt。在高温和压力下(230°C,17000 psi)到(80°C,2000 psi),研究对纳米复合材料均研究了如何影响水基钻孔液的流变学和过滤特性。%用作泥样样品的添加剂,并相对于参考泥浆进行了评估。的结果强调,在温度和压力升高时,带有60%石墨烯的RGBT样品,参考样品塑料粘度,20%硝酸硼和20%氮化钛的含量增强了10%至59%,17%至17%至61%至61%至61%和20%至67%(0.2 wt%),(0.2 wt%),浓度(0.6 wt),(0.6 wt tostive)和(0.6 wt t t t t t t t。同样,产量点分别提高了44%至88%,49%至88%和50%至89%。两种纳米复合材料在HPHT条件下均显着降低了滤液损失。这些发现表明,发达的纳米增强钻孔液可以抵抗高级钻孔操作中遇到的严重条件,并在较高温度下具有更好的热稳定性。
作者:劳拉·隆巴迪(Tenaya Therapeutics)Amara Greer-Short(Tenaya Therapeutics)Anna Greenwood(Tenaya Therapeutics)Elena Leon(Tenaya Therapeutics)Tawny Qureshi(Tenaya Therapeutics) Emilee Easter(Tenaya Therapeutics)Jin(Tenaya Therapeutics)Jaclyn Ho(Tenaya Therapeutics)Stephanie Stephanie(Tenaya Therapeutics)Marie Cho(Tenaya Therapeutics)Charles Feathers(Tenaya Therapautics)琼斯(Tenaya Therapeutics)Chris Alleyne-Levy(Tenaya Therapeutics)Jun Liu(Tenaya Therapeutics)Frank Jing(Tenaya Therapeutics)William Prince(Tenaya Therapeutics)Jianmin Lin(Tenaya Therapeutics) (Tenaya Therapeutics)疗法)
闪烁显像和荧光镜面X射线成像的组合可以使涉及放射性核素(例如无线电栓塞)的较短,更容易的介入程序。由于同时获得解剖和核信息,这可能会减轻患者的负担并简化医院的结构。虽然已经可以使用各种多模式成像技术,并且使用\ cite {cherry2009multimotalization},但这种新方法在临床C-arm \ cite \ cite {van2019dual}上直接将伽马摄像头安装在平面X射线检测器后面。该混合C臂用于介入X射线和闪烁显像成像(IXSI)的优点包括紧凑的设计和自然良好的图像对齐。但是,仍然需要解决一些缺点,尤其是伽马摄像头\ cite {koppert2018 impact}中X射线诱导的盲目效应。到今天为止,大多数临床伽马相机都使用NAI(TL)作为闪烁体。该材料具有相对较高的后光,在每个X射线脉冲之后产生一个背景信号。这种高背景掩盖了伽马光子产生的信号,该信号由radionuclide \ cite {koppert2019 comparative}发出。因此,这项研究的重点是寻找具有与NAI(TL)相似的属性但余热较低的闪烁体。找到了这样的,进行了IXSI混合C型臂检测器的一系列栅极模拟,其中计算了十二种不同的闪烁材料的典型X射线扫描,伽马相机中的能量沉积。 选择了最高的信噪比比率的五个闪烁体进行进一步的内部测试。,进行了IXSI混合C型臂检测器的一系列栅极模拟,其中计算了十二种不同的闪烁材料的典型X射线扫描,伽马相机中的能量沉积。选择了最高的信噪比比率的五个闪烁体进行进一步的内部测试。从每种类型的晶体中的X射线能量沉积中,可以估计闪烁的光发射和余辉。随后将余辉强度与同一闪烁材料中的单个140 keV光子产生的光信号进行比较,通过计算X射线脉冲后100 ms的140 keV光子和余潮引起的光的比率。这些是CEBR3,CDWO4,NAI(TL,Y,SR),NAI(TL,SR)和CSI(TL,SB,BI)。从这些,NAI(TL,Y,SR),NAI(TL,SR)和CSI(TL,SB,BI)是新开发的材料。内部测量值至少包括余辉,衰减时间和能量分辨率测量。将在会议上介绍仿真的广泛结果,并将在内部测量结果带来。
FST 2124食品工程原理MT 8121代数II BT 8124先进的细胞生物学MCO MCO 8124财务报告和标准-II CS8121高级数据库管理系统MB 8124微生物生理学CH 8124 organic Chemistion II BDA2121 II BDA2121 ersistrip of Data Science II BDA21212 8124 Systematics, Phylogeny And Biology Of Chordates PH 8123 Electrodynamics PY 8124 Theories Of Counselling And Psychotherapy - II ES 8122 Natural Resources Management ST8121 Distribution Theory BO 8123 Paleobotany, Palynology, Plant Anatomy PS 8124 Contemporary Debates On Indian Political System .APR 8122 Digital Communication MC 8121 Communication Research Methods SW8124 Social福利管理CA 8123 Amazon Web服务云计算