• NiVolt has Demonstrated Ability to Produce High Quality Nickel Products for the Battery Industry, Achieving Greater Than 97% Nickel and Cobalt Leach Recoveries • Successful Production of Mixed Hydroxide Precipitate Containing Over 45% Nickel Plus Cobalt with Low Impurities for Potential End-User Evaluation • NiVolt is Advancing a Feasibility Study and Site Selection for Downstream Processing Infrastructure in Quebec TORONTO—January 10, 2024年 - 一家私募股权公司Kinterra Capital(“ Kinterra”),该公司投资并开发了能源过渡所必需的关键关键矿产资产和战略基础设施,今天宣布投资组合公司Nivolt Technologies Inc.(“ Nivolt”)已取得了巨大的进步,该目标朝着其提供镍和配音链产品的目标。nivolt已成功生产了混合的氢氧化物沉淀(“ MHP”),并正在推进加拿大魁北克省的水态铝制设施的可行性研究。Nivolt设施将用于电动汽车(“ EV”)电池行业的镍浓缩物和硫酸盐。nivolt在水透明术测试工作上取得了重大进展,以优化过程条件并评估Kinterra在魁北克和澳大利亚的镍项目中的镍浓缩材料,以及在试点工厂运动之前的第三方集中精力。亮点包括:
在回收工厂生产 • 原材料 • 相对价值低 • 需要额外加工才能用于电池 • 包含所有阴极和阳极材料 • 包含污染物和水 • 杂质含量高 • 杂质:>1000 ppm(几乎是矿石级) • 通常运往海外加工 • 可供其他行业使用
通常,样品可能包含来自样品矩阵或低质量流动相位溶剂的化合物,可以通过固定相保留。盐,脂质,增塑剂和聚合物是在分析过程中可能与固定相接触的一些可能物质。这些物质可能会对色谱柱,检测器产生有害影响,并在分析过程中引起瞬时峰。如果这些物质不被流动阶段洗脱,它们可以积聚在列上。随着时间的流逝,分析物可以与这些杂质相互作用并影响分离机制,从而导致保留时间移动和峰值尾巴。此外,这些积累的杂质会造成阻塞,从而导致柱面压力升高,损坏泵,并可能导致柱床中的空隙形成。强烈建议使用防护柱来避免此类问题。防护列是短列,包装包装与喷射器和分析柱之间安装的分析列相似。在给定期间后,它们被丢弃,并安装了新鲜的防护柱,以最大化分析柱的寿命。
我研究了半导体中分离的氢,除了开发新的实验技术以做到这一点。活动/项目包括:“ Beo中的Muonium State的微波研究”,“ GAAS负电荷的Muonium上的光电子化光谱”; “通过光激发哑光自旋光谱探测的ZnSE中的受体氢状态”; “中性和磁磁性muonium作为β-GA2O3中分离氢的类似物”; “研究金红石,解剖酶和布鲁克特二氧化钛的MU/H样状态”; “探测磁性,金属到半导体过渡的金属以及H中H中H的性质”; “研究透明导电氧化物中的氢动力学和稳定性”; “氢杂质在CIGS和CZTS化合物中的作用和行为(下一代太阳能电池材料)”; “描述锡氏合金中H杂质的早期历史”; “开发激发态(MUSES)技术用于半导体的MUON光谱”; “研究MU(类似于H的)国家,包括停止位点,动力学以及碳化硅中的供体和受体水平”;“ GE中的Muonium-Photocarrier相互作用”; GAAS中的“ Muonium-photoionization和Muonium-Photocarrier相互作用”; “旋转北极星候选材料的调查”
Zaworotko 教授还因其“SYNSORB – SYNergistic SORBents”项目获得了近 250 万欧元的奖金。该项目将通过单步净化工艺解决气体和蒸汽净化的高能耗问题,该工艺涉及使用新一代固体材料,即吸附剂。这些吸附剂就像海绵一样吸附杂质,可以自发捕获杂质,并在温和加热时释放杂质。最重要的蒸汽是水蒸气。大气中到处都有水蒸气,即使在最干旱的地区也是如此,但使用现有的干燥剂从水蒸气中获取纯水会消耗大量能源,因此尽管人类面临水资源压力,但这种方法在商业上不可行。二氧化碳和乙炔等气体是商品生产中的杂质,必须使用通常涉及化学反应的工艺将其去除。这些工艺总共消耗了全球约 20% 的能源供应,对水和工业商品的需求持续增长。我们的目标是发现和开发新的吸附剂,将这些过程的能源足迹降低 50-90%,从而显著降低这些过程的能源足迹,进而减少碳足迹。”
按照欧洲药典 9.4 版官方方法,使用 HALO 90 Å C18, 2.7 µm, 2.1 x 100 mm 色谱柱(部件号:92812-602)分离对乙酰氨基酚及其 14 种杂质。如方法中所示,还使用了 HALO 90 Å C18 保护柱(部件号:92812-102),它可以为 HALO ® HPLC 色谱柱提供最佳保护,同时又不影响色谱柱的效率。在运行这些测试时使用合适的保护柱非常重要,因为不同制造商的 C18 键合相会产生不同的结果。强烈建议使用与分析柱来自同一制造商的保护柱,以避免选择性不匹配。图 3 显示了有和没有保护柱的结果对比。上面的色谱图显示没有保护柱的结果,而下面的色谱图显示有保护柱的结果。使用保护柱后,保留时间略有增加。保留时间的增加也使关键杂质 L 和 J 之间的分离度从 1.61 提高到 2.87。
硅发光复合缺陷已被认为是基于在电信波长下工作的自旋和光子自由度的量子技术的潜在平台。它们在复杂设备中的集成仍处于起步阶段,并且主要集中在光萃取和指导上。在这里,通过应变工程来解决与碳相关杂质的电子状态(G-Centers)的控制。通过将它们嵌入绝缘体上的硅斑块中,并以罪恶将它们嵌入[001]和[110]方向上,并显示出对零声子线(ZPL)的受控分裂,这是由压电镜理论框架所解释的。分裂可以大至18 MeV,并且通过选择贴片大小或在贴片上的不同位置移动来调整它。一些分裂的,紧张的ZPL几乎完全极化,相对于平流区域,它们的总体强度可提高7倍,而它们的重组动力学略有影响,因为缺乏purcell效应。该技术可以扩展到其他杂质和基于SI的设备,例如悬浮桥,光子晶体微腔,MIE谐振器和集成的光子电路。
Clarity Bio Elitesyn AW油是USDA认证的Biobased 1,并用超过85%的可再生合成基础库存制造。这些高性能的合成润滑剂利用可持续采购的可再生植物基原料来生产碳氢化合物分子,这些分子在传统的基础油中没有任何源自粗凡士间的杂质。
按照欧洲药典 9.4 版官方方法,使用 HALO 90 Å C18, 2.7 µm, 2.1 x 100 mm 色谱柱(部件号:92812-602)分离对乙酰氨基酚及其 14 种杂质。如方法中所示,还使用了 HALO 90 Å C18 保护柱(部件号:92812-102),它可以为 HALO ® HPLC 色谱柱提供最佳保护,同时又不影响色谱柱的效率。在运行这些测试时使用合适的保护柱非常重要,因为不同制造商的 C18 键合相会产生不同的结果。强烈建议使用与分析柱来自同一制造商的保护柱,以避免选择性不匹配。图 3 显示了有和没有保护柱的结果对比。上面的色谱图显示没有保护柱的结果,而下面的色谱图显示有保护柱的结果。使用保护柱后,保留时间略有增加。保留时间的增加也使关键杂质 L 和 J 之间的分离度从 1.61 提高到 2.87。
最低的色散,快速和精确的梯度以及高度可再现的流速和保留时间使1290 Infinity III LC系统您的最佳前端三倍四倍体和(q-)TOF检测。这些LC/MS系统非常适合对药物杂质和代谢产物,食品安全,环境污染物以及法医/毒理学的高度特异性和超敏分析。