本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
VIGO Photonics 设计和制造 HgCdTe、InAs 和 InAsSb 探测器、专用电子设备(前置放大器、TEC 控制器、电源)、探测模块以及机械配件。这些设备的特点是灵敏度高,光谱范围广,从 2 到 14 μm,速度快,频率带宽高达 1 GHz。
摘要:混合半导体 - 超导体纳米线构成了一个普遍存在的平台,用于研究栅极可调的超导性和拓扑行为的出现。其低维和晶体结构柔韧性有助于独特的异质结构生长和有效的材料优化,这是准确构建复杂的多组分量子材料的关键先决条件。在这里,我们对INSB,INASSB和INAS纳米线上的SN生长进行了广泛的研究,并演示了纳米线的晶体结构如何驱动半金属α -SN或超导β -SN的形成。对于INAS纳米线,我们观察到相纯超导β-SN壳。但是,对于INSB和INASSB纳米线,初始外延α -SN相变成共存α和β相的多晶壳,其中β /α的体积比随SN壳厚度而增加。这些纳米线是否表现出超导性,不批判性地依赖于β -SN含量。因此,这项工作为SN阶段提供了各种半导体的关键见解,这对适合生成拓扑系统的超导杂种产量产生了影响。关键字:纳米线,拓扑材料,半导体 - 螺旋体混合动力,SN,量子计算,界面,外交T
摘要 InSb 是一种窄带 III-V 族半导体,具有带隙小、电子有效质量小、电子迁移率高、有效 g 因子大、自旋轨道相互作用强等特点,这些独特性质使 InSb 在工业应用和量子信息处理方面都具有广阔的应用前景。本文综述了 InSb 量子阱器件量子输运研究的最新进展。随着高质量异质结构生长和微纳制造技术的进步,基于 InSb 量子阱的低维体系中已经开展了量子输运实验。此外,在未掺杂的 InSb 量子阱中已经实现了双极操作,从而可以系统地研究 p 型窄带半导体的能带结构和量子特性。此外,作为对更窄带隙半导体物理探索的延续,我们介绍了对 InAsSb 量子阱的最新研究成果。
摘要 SCD 在过去几年中开发了一系列间距为 10 µm 的中波红外 (MWIR) 波段数字红外探测器,具有多种阵列格式(1920×1536、1280×1024 和 640×512),并配备两种类型的传感阵列(InSb 和 XBn-InAsSb),适用于各种电光 (EO) 系统。InSb 光电二极管阵列基于 SCD 成熟的平面植入 p-n 结技术,该技术覆盖整个 MWIR 波段,设计工作温度为 77K。获得专利的 XBn-InAsSb 屏障探测器技术覆盖了 MWIR 波段的蓝色部分,并提供与平面 InSb 相当的电光性能,但工作温度高达 150 K。两种传感阵列 InSb 和 XBn 均采用倒装芯片接合到我们的 0.18 μm CMOS 技术读出集成电路 (ROIC)。然后将 FPA 组装到定制设计的杜瓦瓶中,这种杜瓦瓶可以承受恶劣的环境条件,同时最大限度地降低探测器的热负荷。专用的近距离电子板为 ROIC 提供电源和定时,并支持通信和视频输出到系统。该系列探测器配有各种低温冷却器和高度灵活的外壳设计,可覆盖广泛的 EO 应用。尺寸较小的探测器特别适用于更紧凑、成本更低的应用,例如微型有效载荷、武器瞄准器、手持式相机和遥控武器站。使用 XBn- InAsSb 传感材料,可提高 F
许多跨学科科学研究都需要对野火进行遥感,包括野火对生态的影响。几十年来,这项研究一直受到空间分辨率不足和探测器在短波和中波红外波长处饱和的阻碍,而高温 (>800 K) 表面的光谱辐射最为显著。为了解决这个问题,我们正在开发一种紧凑型高动态范围 (HDR) 多光谱成像仪。紧凑型火灾红外辐射光谱跟踪器 (c-FIRST) 利用数字焦平面阵列 (DFPA)。DFPA 由最先进的高工作温度屏障红外探测器 (HOT-BIRD) 和数字读出集成电路 (D-ROIC) 混合而成,具有像素内数字计数器以防止电流饱和,从而提供动态范围 (>100 dB)。因此,DFPA 将能够对温度变化范围从 300 K 到 >1600 K(燃烧的火灾)的目标进行非饱和高分辨率成像和定量检索。凭借从 500 公里的标称轨道高度解析地球表面 50 米级热特征的分辨率,一次观测即可捕获野火的全部温度和面积以及冷背景,从而增加每个返回字节的科学内容。使用非饱和 FPA 是一种新颖的做法,它克服了以前高辐射值使 FPA 像素饱和(从而降低了科学内容)的问题,并展示了遥感方面的突破性能力。因此,c-FIRST 适用于量化野火排放,这对于确定其对全球生态系统的影响至关重要。 c-FIRST 的 FPA 采用 InAs/InAsSb HOT-BIRD 外延材料制作,像素间距为 20 m,探测器阵列为 1280x480 格式,并与模拟 DROIC 混合。DFPA 的 50% 截止点为 ~4.5um,在 140K 工作温度下,整个 QE 光谱范围内测得的外部 QE~50%。我们将积分时间固定在 6 毫秒,以便在以 150 Hz 帧速率观察正常 300K 背景场景时在 MWIR 波段获得良好的灵敏度。对于标准模拟 ROIC,探测器像素在目标温度 ~700 K 时很容易饱和。当 D-ROIC 在 16 位模式下运行时,我们可以将饱和温度显著提高到 ~1100 K。当 D-ROIC 在超 HDR 32 位模式下(28 万亿电子阱深度)运行时,即使对于 1600 K 目标,探测器也不会接近饱和。火灾遥感的一个关键指标是可探测的最小目标尺寸。c-FIRST 可将可探测火灾的最小尺寸提高一个数量级,这主要是由于非饱和探测器的空间分辨率比 GOES 上的高级基线成像仪等当前维修仪器更高,同时功率、尺寸和重量也更低。c-FIRST 空中飞行计划于 2024 年火灾季节进行仪器测试和验证。我们预计 c-FIRST 太空验证将基于 2026 年或之后的空间技术验证机会。